Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels

In this manuscript we propose the discrete versions for the recently introduced fractional derivatives with nonsingular Mittag-Leffler function. The properties of such fractional differences are studied and the discrete integration by parts formulas are proved. Then a discrete variational problem is considered with an illustrative example. Finally, some more tools for these derivatives and their discrete versions have been obtained.

[1]  F. Atici,et al.  Modeling with fractional difference equations , 2010 .

[2]  T. Abdeljawad Dual identities in fractional difference calculus within Riemann , 2011, 1112.5795.

[3]  Ilknur Koca,et al.  Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order , 2016 .

[4]  Dumitru Baleanu,et al.  A semigroup-like Property for Discrete Mittag-Leffler Functions , 2012 .

[5]  M. Caputo,et al.  A new Definition of Fractional Derivative without Singular Kernel , 2015 .

[6]  P. Eloe,et al.  A transform method in discrete fractional calculus , 2007 .

[7]  T. Abdeljawad On Delta and Nabla Caputo Fractional Differences and Dual Identities , 2011, 1102.1625.

[8]  Jordan Hristov,et al.  Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffrey’s Kernel to the Caputo-Fabrizio time-fractional derivative , 2016 .

[9]  D. Baleanu,et al.  Existence and uniqueness theorem for a class of delay differential equations with left and right Caputo fractional derivatives , 2008 .

[10]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations, Volume 204 (North-Holland Mathematics Studies) , 2006 .

[11]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[12]  Marin Marin,et al.  Thermoelasticity of initially stressed bodies. Asymptotic equipartition of energies , 1998 .

[13]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[14]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[15]  K. Diethelm,et al.  Fractional Calculus: Models and Numerical Methods , 2012 .

[16]  Paul W. Eloe,et al.  DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR , 2009 .

[17]  Francesco Mainardi,et al.  ON SOME PROPERTIES OF THE MITTAG-LEFFLER FUNCTION E α ( − t α ) , COMPLETELY MONOTONE FOR t > 0 WITH 0 < α < 1 , 2014 .

[18]  T. Abdeljawad Nabla Euler -Lagrange equations in discrete fractional variational calculus within Riemann and Caputo , 2013, 1703.06751.

[19]  J. J. Foncannon Irresistible integrals: symbolics, analysis and experiments in the evaluation of integrals , 2006 .

[20]  Dumitru Baleanu,et al.  Caputo-Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer , 2017 .

[21]  J. Hristov STEADY-STATE HEAT CONDUCTION IN A MEDIUM WITH SPATIAL NON-SINGULAR FADING MEMORY: Derivation of Caputo-Fabrizio space-fractional derivative with Jeffrey’s kernel and analytical solutions , 2016 .

[22]  George A. Anastassiou,et al.  Nabla discrete fractional calculus and nabla inequalities , 2009, Math. Comput. Model..

[23]  Thabet Abdeljawad,et al.  On the Definitions of Nabla Fractional Operators , 2012 .

[24]  Jigen Peng,et al.  A note on property of the Mittag-Leffler function , 2010 .

[25]  Delfim F. M. Torres,et al.  Discrete-time fractional variational problems , 2010, Signal Process..

[26]  R. K. Saxena,et al.  Generalized mittag-leffler function and generalized fractional calculus operators , 2004 .

[27]  Francesco Mainardi On some properties of the Mittag-Leffler function $\mathbf{E_\alpha(-t^\alpha)}$, completely monotone for $\mathbf{t> 0}$ with $\mathbf{0<\alpha<1}$ , 2014 .

[28]  Paul W. Eloe,et al.  Gronwall's inequality on discrete fractional calculus , 2012, Comput. Math. Appl..

[29]  Nien Fan Zhang,et al.  On a new definition of the fractional difference , 1988 .

[30]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[31]  S. Arabia,et al.  Properties of a New Fractional Derivative without Singular Kernel , 2015 .

[32]  P. Eloe,et al.  Initial value problems in discrete fractional calculus , 2008 .

[33]  I. Podlubny Fractional differential equations , 1998 .

[34]  Thabet Abdeljawad,et al.  On Riemann and Caputo fractional differences , 2011, Comput. Math. Appl..

[35]  A. Atangana,et al.  New Fractional Derivatives with Nonlocal and Non-Singular Kernel: Theory and Application to Heat Transfer Model , 2016, 1602.03408.

[36]  Michele Caputo,et al.  Applications of New Time and Spatial Fractional Derivatives with Exponential Kernels , 2016 .

[37]  M. Marin The Lagrange identity method in thermoelasticity of bodies with microstructure , 1994 .

[38]  Badr Saad T. Alkahtani,et al.  Chua's circuit model with Atangana–Baleanu derivative with fractional order , 2016 .

[39]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .