An Optical Investigation of Ignition Processes in Fuel Reactivity Controlled PCCI Combustion

[1]  Rolf D. Reitz,et al.  A Study of the Effects of High EGR, High Equivalence Ratio, and Mixing Time on Emissions Levels in a Heavy-Duty Diesel Engine for PCCI Combustion , 2006 .

[2]  Takeyuki Kamimoto,et al.  High Combustion Temperature for the Reduction of Particulate in Diesel Engines , 1988 .

[3]  Rolf D. Reitz,et al.  Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine , 2007 .

[4]  S. Turns An Introduction to Combustion: Concepts and Applications , 2000 .

[5]  Rolf D. Reitz,et al.  An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations , 2008 .

[6]  K. Akihama,et al.  Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature , 2001 .

[7]  A. A. Amsden,et al.  KIVA-3V, Release 2: Improvements to KIVA-3V , 1999 .

[8]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[9]  R. Reitz,et al.  MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL , 1999 .

[10]  Rolf D. Reitz,et al.  Droplet Collision Modeling in Multi-Dimensional Spray Computations , 2007 .

[11]  H. Hiroyasu,et al.  Models for combustion and formation of nitric oxide and soot in direct injection diesel engines. SAE Paper 760129 , 1976 .

[12]  High Spectral Resolution Emission Thermometry for Combustion Applications , 2005 .

[13]  R. Reitz,et al.  Turbulence Modeling of Internal Combustion Engines Using RNG κ-ε Models , 1995 .

[14]  Takashi Suzuki,et al.  A NEW CONCEPT FOR LOW EMISSION DIESEL COMBUSTION , 1997 .

[15]  Dennis L. Siebers,et al.  Non-Sooting, Low Flame Temperature Mixing-Controlled DI Diesel Combustion , 2003 .

[16]  John Abraham,et al.  ENTRAPMENT CHARACTERISTICS OF TRANSIENT GAS JETS , 1996 .

[17]  John Abraham,et al.  WHAT IS ADEQUATE RESOLUTION IN THE NUMERICAL COMPUTATIONS OF TRANSIENT JETS , 1997 .

[18]  R. Reitz,et al.  A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels , 2008 .

[19]  D. Splitter,et al.  Experiments and Modeling of Dual-Fuel HCCI and PCCI Combustion Using In-Cylinder Fuel Blending , 2009 .

[20]  Charles K. Westbrook,et al.  Chemical kinetics of hydrocarbon ignition in practical combustion systems , 2000 .

[21]  Yasuyuki Sakai,et al.  Universal Rule of Hydrocarbon Oxidation , 2009 .

[22]  Bengt Johansson,et al.  Demonstrating the Multi Fuel Capability of a Homogeneous Charge Compression Ignition Engine with Variable Compression Ratio , 1999 .

[23]  Rolf D. Reitz,et al.  An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine , 2010 .

[24]  Song-Charng Kong,et al.  Modeling Diesel Spray Flame Liftoff, Sooting Tendency, and NOx Emissions Using Detailed Chemistry With Phenomenological Soot Model , 2007 .

[25]  Mingfa Yao,et al.  Effects of Inlet Pressure and Octane Numbers on Combustion and Emissions of a Homogeneous Charge Compression Ignition (HCCI) Engine , 2008 .

[26]  A. A. Amsden,et al.  A Particle Numerical Model for Wall Film Dynamics in Port-Injected Engines , 1996 .

[27]  R. Reitz,et al.  Reduction of Numerical Parameter Dependencies in Diesel Spray Models , 2007 .

[28]  Peter J. O'Rourke,et al.  A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model , 2000 .