On parameter estimation for pairwise interaction point processes

Summary Pairwise interaction point processes form a useful class of models for spatial point patterns, especially patterns for which the spatial distribution of points is more regular than for a homogeneous planar Poisson process. Several authors have proposed methods for estimating the parameters of a pairwise interaction point process. However, there appears to be no general theory which provides grounds for preferring a particular method, nor have any extensive empirical comparisons been published. In this paper, we review three general methods of estimation which have been proposed in the literature and present the results of a comparative simulation study of the three methods.

[1]  W. G. Hoover,et al.  Sixth and Seventh Virial Coefficients for the Parallel Hard‐Cube Model , 1962 .

[2]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[3]  D. J. Strauss A model for clustering , 1975 .

[4]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[5]  B. Ripley,et al.  Markov Point Processes , 1977 .

[6]  B. Ripley Modelling Spatial Patterns , 1977 .

[7]  B. Ripley Simulating Spatial Patterns: Dependent Samples from a Multivariate Density , 1979 .

[8]  Y. Ogata,et al.  Estimation of interaction potentials of spatial point patterns through the maximum likelihood procedure , 1981 .

[9]  J. Besag,et al.  Point process limits of lattice processes , 1982, Journal of Applied Probability.

[10]  Valerie Isham,et al.  A Bivariate Spatial Point Pattern of Ants' Nests , 1983 .

[11]  Peter J. Diggle,et al.  Statistical analysis of spatial point patterns , 1983 .

[12]  Remarks on statistical inference and prediction for a hard-core clustering model , 1983 .

[13]  Y. Ogata,et al.  Likelihood Analysis of Spatial Point Patterns , 1984 .

[14]  P. Diggle,et al.  Monte Carlo Methods of Inference for Implicit Statistical Models , 1984 .

[15]  Y. Ogata,et al.  Estimation of Interaction Potentials of Marked Spatial Point Patterns Through the Maximum Likelihood Method , 1985 .

[16]  David J. Gates,et al.  Clustering estimates for spatial point distributions with unstable potentials , 1986 .

[17]  Erkki Tomppo Models and methods for analysing spatial patterns of trees. , 1986 .

[18]  R. Takacs Estimator for the pair–potential of a gibbsian point process , 1986 .

[19]  P. Diggle,et al.  A nonparametric estimator for pairwise-interaction point processes , 1987 .

[20]  B. Ripley Statistical inference for spatial processes , 1990 .

[21]  T. Fiksel Estimation of interaction potentials of gibbsian point processes , 1988 .

[22]  Y. Ogata,et al.  Likelihood estimation of soft-core interaction potentials for Gibbsian point patterns , 1989 .

[23]  D. Stoyan,et al.  Stochastic Geometry and Its Applications , 1989 .

[24]  J. L. Jensen,et al.  Pseudolikelihood for Exponential Family Models of Spatial Point Processes , 1991 .

[25]  S. Mase,et al.  Uniform LAN condition of planar Gibbsian point processes and optimality of maximum likelihood estimators of soft-core potential functions , 1992 .

[26]  Jens Ledet Jensen,et al.  Asymptotic Normality of Estimates in Spatial Point Processes , 1993 .

[27]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[28]  David Green,et al.  Statistical inference for spatial processes , 1990 .