Pendular state spectroscopy in photodissociation experiments of hydrogen-bonded complexes

Large electric fields are being used in our laboratory to orient molecules by brute force. Under the rotationally cold conditions of a molecular beam, the dipole interaction with a static electric field can be made large with respect to the rotational energy such that the molecules orient with this transition moment along the electric field direction. In this paper we will discuss the use of IR laser spectroscopy to probe this orientation and then go on to consider the use of these oriented beams in the study of photodissociation of hydrogen bonded complexes.

[1]  K. W. Butz,et al.  Mode selectivity in vibrational predissociation: the p-difluorobenzene-argon complex , 1986 .

[2]  D. Herschbach,et al.  Spatial orientation of molecules in strong electric fields and evidence for pendular states , 1991, Nature.

[3]  D. Herschbach,et al.  On the possibility of orienting rotationally cooled polar molecules in an electric field , 1991 .

[4]  R. Miller The Vibrational Spectroscopy and Dynamics of Weakly Bound Neutral Complexes , 1988, Science.

[5]  J. Hetzler,et al.  Product energy correlations in the dissociation of overtone excited nitric oxide dimer , 1991 .

[6]  S. R. Gandhi,et al.  Oriented molecule beams: focused beams of rotationally cold polar polyatomic molecules , 1987 .

[7]  D. Nesbitt,et al.  Mode specific internal and direct rotational predissociation in HeHF, HeDF, and HeHCl: van der Waals complexes in the weak binding limit , 1990 .

[8]  Seung E. Choi,et al.  Theory of oriented symmetric‐top molecule beams: Precession, degree of orientation, and photofragmentation of rotationally state‐selected molecules , 1986 .

[9]  Miller,et al.  Spectroscopy of pendular states: The use of molecular complexes in achieving orientation. , 1992, Physical review letters.

[10]  M. Marshall,et al.  Initial state effects in the vibrational predissociation of hydrogen fluoride dimer , 1992 .

[11]  M. Marshall,et al.  The vibrational predissociation of Ar–CO2 at the state‐to‐state level. I. Vibrational propensity rules , 1992 .

[12]  H. Jalink,et al.  Dynamics of molecular stereochemistry via oriented molecule scattering , 1987 .

[13]  R. Bemish,et al.  Photofragment vibrational, rotational, and translational distributions for N2–HF (v=1) , 1994 .

[14]  G. T. Fraser,et al.  Vibrational predissociation in the H–F stretching mode of HF–DF , 1989 .

[15]  L. Oudejans,et al.  STATE-TO-STATE PHOTODISSOCIATION OF ORIENTED HF-HCl COMPLEXES , 1995 .

[16]  T. E. Gough,et al.  Infrared laser spectroscopy of molecular beams , 1977 .

[17]  Rost,et al.  Pendular states and spectra of oriented linear molecules. , 1992, Physical review letters.

[18]  G. T. Fraser,et al.  Vibrational, rotational, and tunneling dependence of vibrational predissociation in the HF dimer , 1988 .

[19]  M. Marshall,et al.  Vector correlations in the vibrational predissociation of hydrogen fluoride dimer , 1992 .

[20]  D. Clary,et al.  Slit jet infrared spectroscopy of NeHF complexes: Internal rotor and J‐dependent predissociation dynamics , 1989 .

[21]  R. Naaman,et al.  Energy distribution in HCl(v=1) following the vibrational predissociation of C2H2–HCl complex , 1992 .

[22]  D. Clary Vibrational predissociation in D2HF , 1992 .

[23]  Dong H. Zhang,et al.  A time‐dependent golden rule wave packet calculation for vibrational predissociation of D2HF , 1992 .

[24]  M. Marshall,et al.  The vibrational predissociation of Ar–CO2 at the state‐to‐state level. II. Rotational propensity rules and vector correlations , 1992 .

[25]  Dong H. Zhang,et al.  Vibrational predissociation of HF dimer in νHF=1: Influence of initially excited intermolecular vibrations on the fragmentation dynamics , 1995 .