Negative moments of $L$-functions with small shifts over function fields

Abstract. We consider negative moments of quadratic Dirichlet L–functions over function fields. Summing over monic square-free polynomials of degree 2g+1 in Fq[x], we obtain an asymptotic formula for the k shifted negative moment of L(1/2+β, χD), when the shift β in the denominator satisfies Rβ ≥ c0 log g/g for an explicit constant c0 which depends on k, when g → ∞. We also obtain non-trivial upper bounds for the k shifted negative moment when log(1/β) ≪ log g. Previously, almost sharp upper bounds were obtained in [BFK] in the range β ≫ g− 1 2k .

[1]  Clusters of near-degenerate levels dominate negative moments of spectral determinants , 2002 .

[2]  M. Jutila,et al.  On the Mean Value of L(1/2, χ ) FW Real Characters , 1981 .

[3]  J. P. Keating,et al.  Integral Moments of L‐Functions , 2002, math/0206018.

[4]  The second and third moment of L(1/2,χ) in the hyperelliptic ensemble , 2016 .

[5]  Quanli Shen The fourth moment of quadratic Dirichlet L-functions , 2019, Mathematische Zeitschrift.

[6]  J. Littlewood,et al.  Contributions to the theory of the riemann zeta-function and the theory of the distribution of primes , 1916 .

[7]  A. Granville,et al.  The distribution of values of L(1, χd) , 2003 .

[8]  Chantal David,et al.  Nonvanishing for cubic L-functions , 2021, Forum of Mathematics, Sigma.

[9]  Lower bounds for moments of L-functions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Dorian Goldfeld,et al.  Multiple Dirichlet Series and Moments of Zeta and L-Functions , 2003, Compositio Mathematica.

[11]  Alexandra Florea The fourth moment of quadratic Dirichlet L-functions over function fields , 2016, Geometric and Functional Analysis.

[12]  Alexandra Florea,et al.  Hybrid Euler‐Hadamard product for quadratic Dirichlet L –functions in function fields , 2016, 1609.05363.

[13]  K. Soundararajan,et al.  Nonvanishing of quadratic Dirichlet L-functions at s=1/2 , 1999 .

[14]  A. Weil Sur les courbes algébriques et les variétés qui s'en déduisent , 1948 .

[15]  S. Gonek On Negative Moments of the Riemann Zeta‐Function , 1989 .

[16]  Nina C Snaith,et al.  Random Matrix Theory and L-Functions at s= 1/2 , 2000 .

[17]  A. Diaconu On the third moment of L(12,χd) I: The rational function field case , 2019, Journal of Number Theory.

[18]  Michael Rosen,et al.  Number Theory in Function Fields , 2002 .

[19]  Moments of the Riemann zeta function , 2006, math/0612106.

[20]  Signs of Fourier coefficients of half-integral weight modular forms , 2019, 1903.05811.

[21]  N. Snaith,et al.  Random Matrix Theory and ζ(1/2+it) , 2000 .

[22]  Adam J. Harper Sharp conditional bounds for moments of the Riemann zeta function , 2013, 1305.4618.

[23]  COMPLEX MOMENTS AND THE DISTRIBUTION OF VALUES OF OVER FUNCTION FIELDS WITH APPLICATIONS TO CLASS NUMBERS , 2018, Mathematika.

[24]  A. E. Ingham Mean-Value Theorems in the Theory of the Riemann Zeta-Function , 1928 .

[25]  Alexandra Florea Improving the Error Term in the Mean Value of in the Hyperelliptic Ensemble , 2016 .

[26]  K. Soundararajan,et al.  Moments and distribution of central L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L$$\end{document}-values of quadr , 2014, Inventiones mathematicae.

[27]  Alexandra Florea,et al.  The Ratios Conjecture and upper bounds for negative moments of $L$-functions over function fields , 2021, 2109.10396.

[28]  Singularity Dominated Strong Fluctuations for Some Random Matrix Averages , 2004, math-ph/0402001.