Voronoi Diagrams of Moving Points in the Plane
暂无分享,去创建一个
[1] Leonidas J. Guibas,et al. Randomized Incremental Construction of Delaunay and Voronoi Diagrams , 1990, ICALP.
[2] Micha Sharir,et al. Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..
[3] Hiroshi Imai,et al. Minimax geometric fitting of two corresponding sets of points , 1989, SCG '89.
[4] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[5] Micha Sharir,et al. Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.
[6] Hartmut Noltemeier,et al. Dynamic Voronoi Diagrams in Motion Planning , 1991, Workshop on Computational Geometry.
[7] Thomas Roos. k-Nearest-Neighbor Voronoi Diagrams for Sets of Convex Polygons, Line Segments and Points , 1989, WG.
[8] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.
[9] I. G. Gowda,et al. Dynamic Voronoi diagrams , 1983, IEEE Trans. Inf. Theory.
[10] M. Atallah. Some dynamic computational geometry problems , 1985 .
[11] Michael Ian Shamos,et al. Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).
[12] D. T. Lee,et al. On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.
[13] Micha Sharir,et al. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 2015, J. Comb. Theory, Ser. A.
[14] Richard C. T. Lee,et al. Voronoi diagrams of moving points in the plane , 1990, Int. J. Comput. Geom. Appl..
[15] Hiroshi Imai,et al. Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams , 1990, SCG '90.
[16] Leonidas J. Guibas,et al. A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1987, Discret. Comput. Geom..
[17] Hartmut Noltemeier. Computational Geometry and its Applications , 1988 .
[18] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[19] Heinrich Müller,et al. Collision avoidance for nonrigid objects , 1988, ZOR Methods Model. Oper. Res..
[20] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[21] Raimund Seidel,et al. Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..
[22] Chee-Keng Yap,et al. AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..
[23] Joseph O'Rourke. Computational geometry column 12 , 1991, Int. J. Comput. Geom. Appl..
[24] Steven Fortune,et al. A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.
[25] Bernard Chazelle,et al. An Improved Algorithm for Constructing k th-Order Voronoi Diagrams , 1987, IEEE Trans. Computers.