Voronoi Diagrams of Moving Points in the Plane

Consider a set of n points in the Euclidean plane each of which is continuously moving along a given trajectory. At each instant in time, the points define a Voronoi diagram. As the points move, the Voronoi diagram changes continuously, but at certain critical instants in time, topological events occur that cause a change in the Delaunay diagram. In this paper, we present a method of maintaining the Voronoi diagram over time, while showing that the number of topological events has a nearly cubic upper bound of O(n2λs(n)), where λs,(n) is the maximum length of an (n, s)-Davenport-Schinzel sequence and s is a constant depending on the motions of the point sites. In the special case of points moving at constant speed along straight lines, we get s = 4, implying an upper bound of O(n32α(n)), where α(n) is the extremely slowly-growing inverse of Ackermann 's function. Our results are a linear-factor improvement over the naive quartic bound on the number of topological events.

[1]  Leonidas J. Guibas,et al.  Randomized Incremental Construction of Delaunay and Voronoi Diagrams , 1990, ICALP.

[2]  Micha Sharir,et al.  Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams , 2016, Discret. Comput. Geom..

[3]  Hiroshi Imai,et al.  Minimax geometric fitting of two corresponding sets of points , 1989, SCG '89.

[4]  Leonidas J. Guibas,et al.  Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.

[5]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[6]  Hartmut Noltemeier,et al.  Dynamic Voronoi Diagrams in Motion Planning , 1991, Workshop on Computational Geometry.

[7]  Thomas Roos k-Nearest-Neighbor Voronoi Diagrams for Sets of Convex Polygons, Line Segments and Points , 1989, WG.

[8]  M. Iri,et al.  Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.

[9]  I. G. Gowda,et al.  Dynamic Voronoi diagrams , 1983, IEEE Trans. Inf. Theory.

[10]  M. Atallah Some dynamic computational geometry problems , 1985 .

[11]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[12]  D. T. Lee,et al.  On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.

[13]  Micha Sharir,et al.  Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 2015, J. Comb. Theory, Ser. A.

[14]  Richard C. T. Lee,et al.  Voronoi diagrams of moving points in the plane , 1990, Int. J. Comput. Geom. Appl..

[15]  Hiroshi Imai,et al.  Maximin location of convex objects in a polygon and related dynamic Voronoi diagrams , 1990, SCG '90.

[16]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1987, Discret. Comput. Geom..

[17]  Hartmut Noltemeier Computational Geometry and its Applications , 1988 .

[18]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[19]  Heinrich Müller,et al.  Collision avoidance for nonrigid objects , 1988, ZOR Methods Model. Oper. Res..

[20]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[21]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[22]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..

[23]  Joseph O'Rourke Computational geometry column 12 , 1991, Int. J. Comput. Geom. Appl..

[24]  Steven Fortune,et al.  A sweepline algorithm for Voronoi diagrams , 1986, SCG '86.

[25]  Bernard Chazelle,et al.  An Improved Algorithm for Constructing k th-Order Voronoi Diagrams , 1987, IEEE Trans. Computers.