Theory of Strains in Auxetic Materials

[1]  Antoinette Tordesillas,et al.  Granular And Complex Materials , 2007 .

[2]  R. Blumenfeld Stresses in two-dimensional isostatic granular systems: exact solutions , 2007 .

[3]  S. Edwards,et al.  Geometric partition functions of cellular systems: Explicit calculation of the entropy in two and three dimensions , 2005, The European physical journal. E, Soft matter.

[4]  R. Blumenfeld Auxetic strains—insight from iso-auxetic materials , 2005 .

[5]  Joseph N. Grima,et al.  Auxetic behaviour from rotating rigid units , 2005 .

[6]  Gaoyuan Wei,et al.  Molecular design of new kinds of auxetic polymers and networks , 2004 .

[7]  S. Edwards,et al.  Granular entropy: explicit calculations for planar assemblies. , 2003, Physical review letters.

[8]  R. Ball,et al.  From Plasticity to a Renormalisation Group , 2003, cond-mat/0301562.

[9]  R. Ball,et al.  Stress field in granular systems: loop forces and potential formulation. , 2000, Physical review letters.

[10]  S. Edwards,et al.  Effective elastic properties of composites of ellipsoids (I). Nearly spherical inclusions , 1999 .

[11]  B. D. Caddock,et al.  Microporous materials with negative Poisson's ratios. I. Microstructure and mechanical properties , 1989 .

[12]  B. D. Caddock,et al.  Microporous materials with negative Poisson's ratios. II. Mechanisms and interpretation , 1989 .

[13]  Kenneth E. Evans,et al.  Tensile network microstructures exhibiting negative Poisson's ratios , 1989 .

[14]  F. Homand-Etienne,et al.  Thermally induced microcracking in granites: characterization and analysis , 1989 .

[15]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[16]  Gene Simmons,et al.  The effect of saturation on velocity in low porosity rocks , 1969 .

[17]  Wei Gaoyuan MOLECULAR DESIGN OF SEVERAL TYPES OF SELF-ASSEMBLY AUXETIC NETWORKS , 2004 .

[18]  Robert Almgren,et al.  An isotropic three-dimensional structure with Poisson's ratio =−1 , 1985 .

[19]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.