Non-additivity in cation—peptide interactions. A molecular dynamics and ab initio study of Na+ in the gramicidin channel

Abstract The importance of non-additive energy contributions in cation—peptide interactions is investigated, in the context of Na + binding to the gramicidin channel, using molecular dynamics simulations and ab initio calculations. SCF supermolecule calculations are performed for an ensemble of Na + and N-methylacetamide complexes constructed from configurations generated by a molecular dynamics trajectory of the full channel system to represent the gramicidin binding site. A main result is that the ab initio estimates of the excess many-body interactions due to the cation are very well correlated with second-order induction energy obtained from a simple approximation based on atomic polarizabilities.

[1]  Charles L. Brooks,et al.  An abinitio study of hydrated chloride ion complexes: Evidence of polarization effects and nonadditivity , 1987 .

[2]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[3]  E. Clementi,et al.  Electronic correlation contribution to the three-body potentials for water trimers , 1983 .

[4]  J. F. Hinton,et al.  TI-205 nuclear magnetic resonance determination of the thermodynamic parameters for the binding of monovalent cations to gramicidins A and C. , 1988, Biophysical journal.

[5]  E. Kochanski Non-additivity of SCF interaction energies in H3O+H2O)2 , 1987 .

[6]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[7]  M. Migliore,et al.  Hydration free energy for Li+ at infinite dilution with a three‐body ab initio potential , 1989 .

[8]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[9]  Stephen Hanessian,et al.  The psychobiological basis of heuristic synthesis planning - man, machine and the chiron approach , 1990 .

[10]  J. Goodfellow Cooperative effects in water-biomolecule crystal systems. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[11]  T. Vorherr,et al.  Construction and molecular dynamics simulation of calmodulin in the extended and in a bent conformation. , 1992, European journal of biochemistry.

[12]  M. Karplus,et al.  Ion transport in the gramicidin channel: free energy of the solvated right-handed dimer in a model membrane , 1993 .

[13]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[14]  Peter A. Kollman,et al.  Ion solvation in polarizable water: molecular dynamics simulations , 1991 .

[15]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[16]  L. Nicholson,et al.  Gramicidin cation channel: an experimental determination of the right-handed helix sense and verification of beta-type hydrogen bonding. , 1989, Biochemistry.

[17]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[18]  D. Urry,et al.  Location of monovalent cation binding sites in the gramicidin channel. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P. Claverie,et al.  Theoretical studies of molecular conformation. Derivation of an additive procedure for the computation of intramolecular interaction energies. Comparison withab initio SCF computations , 1984 .

[20]  R. Wiest,et al.  About the first solvation shell of protonated hydrates: H3O+(H2O)6 , 1990 .

[21]  G. Diercksen,et al.  SCF-CI studies of correlation effects on hydrogen bonding and ion hydration , 1975 .

[22]  S J Wodak,et al.  Calculations of electrostatic properties in proteins. Analysis of contributions from induced protein dipoles. , 1987, Journal of molecular biology.

[23]  J. Pople,et al.  Theory of molecular interactions. III. A comparison of studies of H2O polymers using different molecular‐orbital basis sets , 1973 .

[24]  W. Hubbell Transbilayer coupling mechanism for the formation of lipid asymmetry in biological membranes. Application to the photoreceptor disc membrane. , 1990, Biophysical journal.

[25]  M Karplus,et al.  Ion transport in a model gramicidin channel. Structure and thermodynamics. , 1991, Biophysical journal.

[26]  B. Rode,et al.  Zinc ion in water : intermolecular potential with approximate three-body correction and Monte Carlo simulation , 1991 .

[27]  J. Kushick,et al.  The molecular mechanics of valinomycin. II: Comparative studies of alkali ion binding , 1985 .

[28]  Y. Ovchinnikov,et al.  1H‐NMR study of gramicidin A transmembrane ion channel , 1985, FEBS letters.

[29]  Jules W. Moskowitz,et al.  Water Molecule Interactions , 1970 .

[30]  E. Clementi,et al.  Nonadditivity of interaction in water trimers , 1980 .

[31]  E. Clementi,et al.  Non-additivity in water-ion-water interactions , 1980 .

[32]  L. Curtiss,et al.  Nonadditivity of ab initio pair potentials for molecular dynamics of multivalent transition metal ions in water , 1987 .

[33]  M. Probst A study of the additivity of interactions in cation-water systems , 1987 .

[34]  B. Cornell,et al.  Solid-state 13C-NMR studies of the effects of sodium ions on the gramicidin A ion channel. , 1990, Biochimica et biophysica acta.

[35]  G. W. Robinson,et al.  Molecular‐dynamics computer simulation of an aqueous NaCl solution: Structure , 1992 .