Stabilization of slow-fast systems at fold points

In this document, we deal with the stabilization problem of slow-fast systems (or singularly perturbed Ordinary Differential Equations) at a non-hyperbolic point. The class of systems studied here have the following properties: 1) they have one fast variable and an arbitrary number of slow variables, 2) they have a non-hyperbolic singularity of the fold type at the origin. The presence of the aforementioned singularity complicates the analysis and the controller design of such systems. In particular, the classical theory of singular perturbations cannot be used. We show a novel design process based on geometric desingularization, which allows the stabilization of a fold point of singularly perturbed control systems. Our results are exemplified on an electric circuit.

[1]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[2]  Dragan Nesic,et al.  A unified framework for input-to-state stability in systems with two time scales , 2003, IEEE Trans. Autom. Control..

[3]  H. Broer,et al.  Analysis of a slow–fast system near a cusp singularity , 2015, 1506.08679.

[4]  Peter Szmolyan,et al.  Extending Geometric Singular Perturbation Theory to Nonhyperbolic Points - Fold and Canard Points in Two Dimensions , 2001, SIAM J. Math. Anal..

[5]  Jacquelien M.A. Scherpen,et al.  Stabilization of a planar slow-fast system at a non-hyperbolic point , 2016 .

[6]  M. Krupa,et al.  Relaxation Oscillation and Canard Explosion , 2001 .

[7]  Domitilla Del Vecchio,et al.  A Contraction Theory Approach to Singularly Perturbed Systems , 2013, IEEE Transactions on Automatic Control.

[8]  H. Broer,et al.  Polynomial normal forms of constrained differential equations with three parameters , 2014, 1401.3932.

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  An-Chang Deng,et al.  Impasse points. Part I: Numerical aspects , 1989 .

[11]  Laura Menini,et al.  Stability analysis of planar systems with nilpotent (non-zero) linear part , 2010, Autom..

[12]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[13]  C. Kuehn Multiple Time Scale Dynamics , 2015 .

[14]  Petar V. Kokotovic,et al.  Singular perturbations and time-scale methods in control theory: Survey 1976-1983 , 1982, Autom..

[15]  Arkady Pikovsky,et al.  Slow-fast dynamics in Josephson junctions , 2003 .

[16]  M. Spong Modeling and Control of Elastic Joint Robots , 1987 .

[17]  Petar V. Kokotovic,et al.  Singular perturbations and order reduction in control theory - An overview , 1975, at - Automatisierungstechnik.

[18]  Lorenzo Marconi,et al.  Robust asymptotic stabilization of nonlinear systems with non-hyperbolic zero dynamics: Part II , 2008, 2008 47th IEEE Conference on Decision and Control.

[19]  Horacio G. Rotstein,et al.  Mixed-Mode Oscillations in Single Neurons , 2014, Encyclopedia of Computational Neuroscience.

[20]  Haoyong Yu,et al.  Dynamic surface control via singular perturbation analysis , 2015, Autom..

[21]  E. Ihrig,et al.  The regularization of nonlinear electrical circuits , 1975 .

[22]  J. M. Boardman,et al.  Singularities of differentiable maps , 2011 .

[23]  P. Szmolyana,et al.  Relaxation oscillations in R 3 , 2004 .

[24]  Eric Lombardi,et al.  Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation , 2010 .

[25]  J. Murdock Perturbations: Theory and Methods , 1987 .

[26]  Gunther Reissig,et al.  Differential-algebraic equations and impasse points , 1996 .

[27]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[28]  John Guckenheimer,et al.  Mixed-Mode Oscillations with Multiple Time Scales , 2012, SIAM Rev..

[29]  Zoran Gajic,et al.  Improvement of system order reduction via balancing using the method of singular perturbations , 2001, Autom..

[31]  Peter Szmolyan,et al.  Relaxation oscillations in R3 , 2004 .

[32]  S. Smale On the mathematical foundations of electrical circuit theory , 1972 .

[33]  Hildeberto Jard'on-Kojakhmetov,et al.  Formal normal form of Ak slow–fast systems , 2015, 1504.00122.

[34]  Emilia Fridman,et al.  Sliding mode control in the presence of input delay: A singular perturbation approach , 2012, Autom..

[35]  Lorenzo Marconi,et al.  Robust Asymptotic Stabilization of Nonlinear Systems With Non-Hyperbolic Zero Dynamics , 2008, IEEE Transactions on Automatic Control.

[36]  Ricardo G. Sanfelice,et al.  On singular perturbations due to fast actuators in hybrid control systems , 2011, Autom..

[37]  Chunyu Yang,et al.  Control for a class of non-linear singularly perturbed systems subject to actuator saturation , 2013 .

[38]  Antoine Girard,et al.  Singular Perturbation Approximation of Linear Hyperbolic Systems of Balance Laws , 2016, IEEE Transactions on Automatic Control.

[39]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[40]  Theodor Bröcker,et al.  Differentiable Germs and Catastrophes , 1975 .

[41]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[42]  Balth van der Pol Jun Docts. Sc.,et al.  LXXII. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart , 1928 .

[43]  Hassan K. Khalil,et al.  Singular perturbation methods in control : analysis and design , 1986 .

[44]  John Guckenheimer,et al.  Mixed-Mode Oscillations of El Niño–Southern Oscillation , 2015, 1511.07472.

[45]  Peter Szmolyan,et al.  Scaling in Singular Perturbation Problems: Blowing Up a Relaxation Oscillator , 2011, SIAM J. Appl. Dyn. Syst..

[46]  Riccardo Marino,et al.  A geometric approach to nonlinear singularly perturbed control systems, , 1988, Autom..

[47]  Gilles Wainrib,et al.  Multiscale analysis of slow-fast neuronal learning models with noise , 2012, Journal of mathematical neuroscience.

[48]  Leon O. Chua,et al.  Impasse points. Part II: Analytical aspects , 1989 .

[49]  Andrey Shilnikov,et al.  Complete dynamical analysis of a neuron model , 2012 .

[50]  M. Krupa,et al.  Local analysis near a folded saddle-node singularity , 2010 .

[51]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[52]  F. Takens Constrained equations; a study of implicit differential equations and their discontinuous solutions , 1976 .

[53]  Jacquelien M. A. Scherpen,et al.  Nonlinear adaptive stabilization of a class of planar slow-fast systems at a non-hyperbolic point , 2017, 2017 American Control Conference (ACC).

[54]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[55]  P. Kokotovic Applications of Singular Perturbation Techniques to Control Problems , 1984 .

[56]  Hildeberto Jardón Kojakhmetov,et al.  Classification of constrained differential equations embedded in the theory of slow fast systems: Ak singularities and geometric desingularization , 2015 .

[57]  Freddy Dumortier,et al.  Canard Cycles and Center Manifolds , 1996 .