Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation

Discrete-velocity approximations represent a popular way for computing the Boltzmann collision operator. The direct numerical evaluation of such methods involve a prohibitive cost, typically O(N 2d+1 )w hered is the dimension of the velocity space. In this paper, following the ideas introduced

[1]  D. R. Heath-Brown,et al.  An Introduction to the Theory of Numbers, Sixth Edition , 2008 .

[2]  Lorenzo Pareschi,et al.  A Fourier spectral method for homogeneous boltzmann equations , 1996 .

[3]  Centre for Mathematical Sciences, University of Cambridge, , 2000 .

[4]  Lorenzo Pareschi,et al.  Solving the Boltzmann Equation in N log2N , 2006, SIAM J. Sci. Comput..

[5]  Lexing Ying,et al.  A fast spectral algorithm for the quantum Boltzmann collision operator , 2012 .

[6]  Raphael Aronson,et al.  Theory and application of the Boltzmann equation , 1976 .

[7]  Giovanni Russo,et al.  Numerical solutions of the Boltzmann equation: comparison of different algorithms , 2008 .

[8]  L. C. Pitchford,et al.  A Numerical Solution of the Boltzmann Equation , 1983 .

[9]  J. Mixter Fast , 2012 .

[10]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[11]  T. Carleman,et al.  Sur la théorie de l'équation intégrodifférentielle de Boltzmann , 1933 .

[12]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[13]  P. Michel,et al.  Approximation simultanée de réels par des nombres rationnels et noyau de collision de l'équation de Boltzmann , 2000 .

[14]  Dimitris Valougeorgis,et al.  Acceleration Schemes of the Discrete Velocity Method: Gaseous Flows in Rectangular Microchannels , 2003, SIAM J. Sci. Comput..

[15]  C. Buet,et al.  A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics , 1996 .

[16]  François Rogier,et al.  A deterministic method for solving the homogeneous Boltzmann equation , 1992 .

[17]  Francis Filbet,et al.  A NUMERICAL SCHEME FOR THE QUANTUM BOLTZMANN EQUATION WITH STIFF COLLISION TERMS , 2012 .

[18]  Tadeusz Płatkowski,et al.  An acceleration procedure for discrete velocity approximation of the Boltzmann collision operator , 2000 .

[19]  Lorenzo Pareschi,et al.  Fast conservative and entropic numerical methods for the Boson Boltzmann equation , 2010, Numerische Mathematik.

[20]  Alexei Heintz,et al.  A new consistent discrete‐velocity model for the Boltzmann equation , 2002 .

[21]  François Rogier,et al.  Une méthode déterministe pour la résolution de l'équation de Boltzmann homogène , 1992 .

[22]  A. Bobylev,et al.  Construction of Discrete Kinetic Models with Given Invariants , 2008 .

[23]  S. Rjasanow,et al.  Difference scheme for the Boltzmann equation based on the Fast Fourier Transform , 1997 .

[24]  Lorenzo Pareschi,et al.  Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..

[25]  Sergej Rjasanow,et al.  Numerical solution of the Boltzmann Equation using fully conservative difference scheme based on the Fast Fourier Transform , 2000 .

[26]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[27]  Sergej Rjasanow,et al.  Numerical solution of the Boltzmann equation on the uniform grid , 2002, Computing.

[28]  R. Illner,et al.  Discrete Velocity Models of the Boltzmann Equation: A Survey on the Mathematical ASPECTS of the Theory , 1988 .

[29]  A. Bobylev Exact solutions of the Boltzmann equation , 1975 .

[30]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[31]  F. Rogier,et al.  A direct method for solving the Boltzmann equation , 1994 .

[32]  S. Rjasanow,et al.  Fast deterministic method of solving the Boltzmann equation for hard spheres , 1999 .

[33]  Francis Filbet,et al.  Analysis of spectral methods for the homogeneous Boltzmann equation , 2008, 0811.2849.

[34]  Shi Jin,et al.  A Numerical Scheme for the Quantum Boltzmann Equation Efficient in the Fluid Regime , 2010, 1009.3352.

[35]  Andrzej Palczewski,et al.  On approximation of the Boltzmann equation by discrete velocity models , 1995 .

[36]  Arnaldo Nogueira,et al.  Multidimensional Farey partitions , 2006 .

[37]  H. Cabannes,et al.  The Discrete Boltzmann Equation (Theory and Applications) , 2022 .

[38]  J. W. Eastwood,et al.  Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .

[39]  S. Rjasanow,et al.  Numerical solution of the Boltzmann equation using a fully conservative difference scheme based on the fast fourier transform , 2000 .

[40]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[41]  Lorenzo Pareschi,et al.  Fast methods for the Boltzmann collision integral , 2004 .

[42]  Irene M. Gamba,et al.  Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..