Convolutive decomposition and fast summation methods for discrete-velocity approximations of the Boltzmann equation
暂无分享,去创建一个
[1] D. R. Heath-Brown,et al. An Introduction to the Theory of Numbers, Sixth Edition , 2008 .
[2] Lorenzo Pareschi,et al. A Fourier spectral method for homogeneous boltzmann equations , 1996 .
[3] Centre for Mathematical Sciences, University of Cambridge, , 2000 .
[4] Lorenzo Pareschi,et al. Solving the Boltzmann Equation in N log2N , 2006, SIAM J. Sci. Comput..
[5] Lexing Ying,et al. A fast spectral algorithm for the quantum Boltzmann collision operator , 2012 .
[6] Raphael Aronson,et al. Theory and application of the Boltzmann equation , 1976 .
[7] Giovanni Russo,et al. Numerical solutions of the Boltzmann equation: comparison of different algorithms , 2008 .
[8] L. C. Pitchford,et al. A Numerical Solution of the Boltzmann Equation , 1983 .
[10] R. Illner,et al. The mathematical theory of dilute gases , 1994 .
[11] T. Carleman,et al. Sur la théorie de l'équation intégrodifférentielle de Boltzmann , 1933 .
[12] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[13] P. Michel,et al. Approximation simultanée de réels par des nombres rationnels et noyau de collision de l'équation de Boltzmann , 2000 .
[14] Dimitris Valougeorgis,et al. Acceleration Schemes of the Discrete Velocity Method: Gaseous Flows in Rectangular Microchannels , 2003, SIAM J. Sci. Comput..
[15] C. Buet,et al. A discrete-velocity scheme for the Boltzmann operator of rarefied gas dynamics , 1996 .
[16] François Rogier,et al. A deterministic method for solving the homogeneous Boltzmann equation , 1992 .
[17] Francis Filbet,et al. A NUMERICAL SCHEME FOR THE QUANTUM BOLTZMANN EQUATION WITH STIFF COLLISION TERMS , 2012 .
[18] Tadeusz Płatkowski,et al. An acceleration procedure for discrete velocity approximation of the Boltzmann collision operator , 2000 .
[19] Lorenzo Pareschi,et al. Fast conservative and entropic numerical methods for the Boson Boltzmann equation , 2010, Numerische Mathematik.
[20] Alexei Heintz,et al. A new consistent discrete‐velocity model for the Boltzmann equation , 2002 .
[21] François Rogier,et al. Une méthode déterministe pour la résolution de l'équation de Boltzmann homogène , 1992 .
[22] A. Bobylev,et al. Construction of Discrete Kinetic Models with Given Invariants , 2008 .
[23] S. Rjasanow,et al. Difference scheme for the Boltzmann equation based on the Fast Fourier Transform , 1997 .
[24] Lorenzo Pareschi,et al. Fast algorithms for computing the Boltzmann collision operator , 2006, Math. Comput..
[25] Sergej Rjasanow,et al. Numerical solution of the Boltzmann Equation using fully conservative difference scheme based on the Fast Fourier Transform , 2000 .
[26] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[27] Sergej Rjasanow,et al. Numerical solution of the Boltzmann equation on the uniform grid , 2002, Computing.
[28] R. Illner,et al. Discrete Velocity Models of the Boltzmann Equation: A Survey on the Mathematical ASPECTS of the Theory , 1988 .
[29] A. Bobylev. Exact solutions of the Boltzmann equation , 1975 .
[30] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[31] F. Rogier,et al. A direct method for solving the Boltzmann equation , 1994 .
[32] S. Rjasanow,et al. Fast deterministic method of solving the Boltzmann equation for hard spheres , 1999 .
[33] Francis Filbet,et al. Analysis of spectral methods for the homogeneous Boltzmann equation , 2008, 0811.2849.
[34] Shi Jin,et al. A Numerical Scheme for the Quantum Boltzmann Equation Efficient in the Fluid Regime , 2010, 1009.3352.
[35] Andrzej Palczewski,et al. On approximation of the Boltzmann equation by discrete velocity models , 1995 .
[36] Arnaldo Nogueira,et al. Multidimensional Farey partitions , 2006 .
[37] H. Cabannes,et al. The Discrete Boltzmann Equation (Theory and Applications) , 2022 .
[38] J. W. Eastwood,et al. Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .
[39] S. Rjasanow,et al. Numerical solution of the Boltzmann equation using a fully conservative difference scheme based on the fast fourier transform , 2000 .
[40] C. Villani. Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .
[41] Lorenzo Pareschi,et al. Fast methods for the Boltzmann collision integral , 2004 .
[42] Irene M. Gamba,et al. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..