On the Game Chromatic Number of Sparse Random Graphs

Given a graph $G$ and an integer $k$, two players take turns coloring the vertices of $G$ one by one using $k$ colors so that neighboring vertices get different colors. The first player wins iff at the end of the game all the vertices of $G$ are colored. The game chromatic number $\chi_g(G)$ is the minimum $k$ for which the first player has a winning strategy. The paper [T. Bohman, A. M. Frieze, and B. Sudakov, Random Structures Algorithms, 32 (2008), pp. 223--235] began the analysis of the asymptotic behavior of this parameter for a random graph $G_{n,p}$. This paper provides some further analysis for graphs with constant average degree, i.e., $np=O(1)$, and for random regular graphs. We show that with high probability (w.h.p.) $c_1\chi(G_{n,p})\leq \chi_g(G_{n,p})\leq c_2\chi(G_{n,p})$ for some absolute constants $1<c_1< c_2$. We also prove that if $G_{n,3}$ denotes a random $n$-vertex cubic graph, then w.h.p. $\chi_g(G_{n,3})=4$.

[1]  Jorge Nuno Silva,et al.  Mathematical Games , 1959, Nature.

[2]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[3]  Béla Bollobás,et al.  The chromatic number of random graphs , 1988, Comb..

[4]  U. Faigle,et al.  On the game chromatic number of some classes of graphs , 1991 .

[5]  Hans L. Bodlaender On the Complexity of Some Coloring Games , 1991, Int. J. Found. Comput. Sci..

[6]  Tomasz Luczak The chromatic number of random graphs , 1991, Comb..

[7]  Alan M. Frieze,et al.  On the independence and chromatic numbers of random regular graphs , 1992, J. Comb. Theory, Ser. B.

[8]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[9]  N. Wormald,et al.  Models of the , 2010 .

[10]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[11]  Alan M. Frieze,et al.  Random Regular Graphs of Non-Constant Degree: Connectivity and Hamiltonicity , 2002, Combinatorics, Probability and Computing.

[12]  J. H. Kima Sandwiching random graphs : universality between random graph models , 2002 .

[13]  Assaf Naor,et al.  The two possible values of the chromatic number of a random graph , 2004, STOC '04.

[14]  Cristopher Moore,et al.  The Chromatic Number of Random Regular Graphs , 2004, APPROX-RANDOM.

[15]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[16]  Xuding Zhu,et al.  The Map-Coloring Game , 2007, Am. Math. Mon..

[17]  N. Wormald,et al.  On the chromatic number of random d-regular graphs , 2008, 0812.2937.

[18]  A. Frieze,et al.  The game chromatic number of random graphs , 2008 .

[19]  N. Wormald Models of random regular graphs , 2010 .