A parallel algorithm for skeletonizing images by using spiking neural P systems

Abstract Skeletonization is a common type of transformation within image analysis. In general, the image B is a skeleton of the black and white image A , if the image B is made of fewer black pixels than the image A , it does preserve its topological properties and, in some sense, keeps its meaning . In this paper, we aim to use spiking neural P systems (a computational model in the framework of membrane computing) to solve the skeletonization problem. Based on such devices, a parallel software has been implemented within the Graphics Processors Units (GPU) architecture. Some of the possible real-world applications and new lines for future research will be also dealt with in this paper.

[1]  Mario J. Pérez-Jiménez,et al.  A P-Lingua Programming Environment for Membrane Computing , 2008, Workshop on Membrane Computing.

[2]  Grzegorz Rozenberg,et al.  Handbook of formal languages, vol. 1: word, language, grammar , 1997 .

[3]  Azriel Rosenfeld,et al.  Computer Vision , 1988, Adv. Comput..

[4]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[5]  Zicheng Guo,et al.  Parallel thinning with two-subiteration algorithms , 1989, Commun. ACM.

[6]  Mario de Jesús Pérez Jiménez,et al.  Thresholding 2D Images with Cell-like P Systems , 2010 .

[7]  Harry Blum,et al.  An Associative Machine for Dealing with the Visual Field and Some of Its Biological Implications , 1962 .

[8]  Artiom Alhazov,et al.  Membrane Computing , 2013, Lecture Notes in Computer Science.

[9]  Ioannis Pratikakis,et al.  An Objective Evaluation Methodology for Document Image Binarization Techniques , 2008, 2008 The Eighth IAPR International Workshop on Document Analysis Systems.

[10]  John D. Owens,et al.  GPU Computing , 2008, Proceedings of the IEEE.

[11]  Linqiang Pan,et al.  Spiking Neural P Systems with Neuron Division , 2010, Int. Conf. on Membrane Computing.

[12]  Gheorghe Paun,et al.  Membrane Computing , 2002, Natural Computing Series.

[13]  Gheorghe Paun,et al.  Spiking Neural P Systems with Anti-Spikes , 2009, Int. J. Comput. Commun. Control.

[14]  Haiming Chen,et al.  Spiking neural P systems with extended rules: universality and languages , 2006, Natural Computing.

[15]  Wim Hordijk,et al.  Cellular automata for image noise filtering , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[16]  Tseren-Onolt Ishdorj,et al.  Spiking Neural P Systems with Extended Rules , 2006 .

[17]  Daniel Díaz-Pernil,et al.  Implementation on CUDA of the Smoothing Problem with Tissue-Like P Systems , 2011, Int. J. Nat. Comput. Res..

[18]  Daniel Díaz-Pernil,et al.  Parallel Skeletonizing of Digital Images by Using Cellular Automata , 2012, CTIC.

[19]  Zicheng Guo,et al.  Fast fully parallel thinning algorithms , 1991, CVGIP Image Underst..

[20]  Grzegorz Rozenberg,et al.  Handbook of Formal Languages , 1997, Springer Berlin Heidelberg.

[21]  Georgy L. Gimel'farb,et al.  Probabilistic regularisation and symmetry in binocular dynamic programming stereo , 2002, Pattern Recognit. Lett..

[22]  Radu Nicolescu,et al.  P Systems in Stereo Matching , 2011, CAIP.

[23]  Gheorghe Păun,et al.  Spiking Neural P Systems with Weights , 2010, Neural Computation.

[24]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[25]  Michael Egmont-Petersen,et al.  Image processing with neural networks - a review , 2002, Pattern Recognit..

[26]  Daniel Díaz-Pernil,et al.  A Parallel Implementation of the Thresholding Problem by Using Tissue-Like P Systems , 2011, CAIP.

[27]  Linqiang Pan,et al.  Spiking Neural P Systems with Astrocytes , 2012, Neural Computation.

[28]  Mario J. Pérez-Jiménez,et al.  Available Membrane Computing Software , 2006, Applications of Membrane Computing.

[29]  Mario J. Pérez-Jiménez,et al.  Hebbian Learning from Spiking Neural P Systems View , 2009, Workshop on Membrane Computing.

[30]  Pedro Real Jurado,et al.  Region-based segmentation of 2D and 3D images with tissue-like P systems , 2011, Pattern Recognit. Lett..

[31]  Pedro Real Jurado,et al.  Segmentation in 2D and 3D Image Using Tissue-Like P System , 2009, CIARP.

[32]  David Corne,et al.  Membrane Computing - 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31, 2008, Revised Selected and Invited Papers , 2009, Workshop on Membrane Computing.

[33]  Paul L. Rosin Training cellular automata for image processing , 2005, IEEE Transactions on Image Processing.

[34]  Khalid Saeed,et al.  K3M: A universal algorithm for image skeletonization and a review of thinning techniques , 2010, Int. J. Appl. Math. Comput. Sci..

[35]  Gheorghe Paun Spiking Neural P Systems: A Tutorial , 2007, Bull. EATCS.

[36]  Xiangxiang Zeng,et al.  Spiking Neural P Systems with Weighted Synapses , 2011, Neural Processing Letters.

[37]  Rama Chellappa,et al.  Artificial Neural Networks for Computer Vision , 1991, Research Notes in Neural Computing.

[38]  Marian Gheorghe,et al.  A membrane algorithm with quantum-inspired subalgorithms and its application to image processing , 2012, Natural Computing.

[39]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[40]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[41]  Alfonso Rodríguez-Patón,et al.  Tissue P systems , 2003, Theor. Comput. Sci..