Access Methods for Intervals

Intervals provide a compact way to represent the duration of a property. They appear in many database applications, including spatial, temporal [Jensen and Snodgrass, 1999], constraint [Bertino et al., 1997; Ramaswamy, 1997] and object-oriented databases [Kanellakis et al., 1993]. Due to their importance, many techniques have been proposed in literature for indexing intervals. Here we concentrate on the 1-dimensional dynamic interval management problem and in particular the so-called stabbing query. We first present classical main-memory solutions to the stabbing query, namely: the Interval Tree, the Segment Tree and the Priority Search Tree. These structures have been extended in various ways to support intervals in external memory (i.e., on the disk). Among other structures in this chapter we discuss: the Segment R-tree, the External Segment Tree, the External Priority Search Tree, the Metablock Tree, the External Memory Interval Tree, the Binary-Blocked Interval Tree and the Time-Polygon Index.

[1]  Roberto Tamassia,et al.  Dynamic algorithms in computational geometry , 1992, Proc. IEEE.

[2]  Sridhar Ramaswamy,et al.  Path Caching: A Technique for Optimal External Searching , 1994, PODS 1994.

[3]  H. Edelsbrunner A new approach to rectangle intersections part I , 1983 .

[4]  Christian S. Jensen,et al.  Temporal Data Management , 1999, IEEE Trans. Knowl. Data Eng..

[5]  Michael Stonebraker,et al.  Segment indexes: dynamic indexing techniques for multi-dimensional interval data , 1991, SIGMOD '91.

[6]  Christos Faloutsos,et al.  Access Methods for Bi-Temporal Databases , 1995, Temporal Databases.

[7]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[8]  Ralf Hartmut Güting,et al.  XP-Trees: External Priority Search Trees , 1990 .

[9]  Vassilis J. Tsotras,et al.  Comparison of access methods for time-evolving data , 1999, CSUR.

[10]  Cláudio T. Silva,et al.  External memory techniques for isosurface extraction in scientific visualization , 1998, External Memory Algorithms.

[11]  Jeffrey Scott Vitter,et al.  Optimal dynamic interval management in external memory , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[12]  Edward M. McCreight,et al.  Priority Search Trees , 1985, SIAM J. Comput..

[13]  Jeffrey Scott Vitter External memory algorithms , 1998, PODS '98.

[14]  Rolf Klein,et al.  Priority Search Trees in Secondary Memory (Extended Abstract) , 1987, WG.

[15]  Christos H. Papadimitriou,et al.  On the analysis of indexing schemes , 1997, PODS '97.

[16]  Beng Chin Ooi,et al.  The TP-Index: a dynamic and efficient indexing mechanism for temporal databases , 1994, Proceedings of 1994 IEEE 10th International Conference on Data Engineering.

[17]  Sridhar Ramaswamy,et al.  Indexing for Data Models with Constraints and Classes , 1996, J. Comput. Syst. Sci..

[18]  Vassilis J. Tsotras,et al.  The Snapshot Index: An I/O-optimal access method for timeslice queries , 1995, Inf. Syst..

[19]  Oliver Günther,et al.  Multidimensional access methods , 1998, CSUR.

[20]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[21]  Sridhar Ramaswamy Efficient Indexing for Constraint and Temporal Databases , 1997, ICDT.

[22]  Sridhar Ramaswamy,et al.  The P-range tree: a new data structure for range searching in secondary memory , 1995, SODA '95.

[23]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[24]  Bernhard Seeger,et al.  An asymptotically optimal multiversion B-tree , 1996, The VLDB Journal.

[25]  Elisa Bertino,et al.  Towards Optimal Two-Dimensional Indexing for Constraint Databases , 1997, Inf. Process. Lett..