A comparative study of using static and ultrasonic material testing methods to determine the anisotropic material properties of wood

Abstract This paper presents a comparative study using static and ultrasonic testing for the determination of the full set of orthotropic material properties of wood. In the literature, material properties are typically only available in the longitudinal direction, and most international standards do not provide details on the testing of the other two secondary directions (radial and tangential). This work provides a comprehensive study and discussions on the determination of all twelve orthotropic material properties of two hardwood species using static testing and an alternative testing approach based on ultrasonic waves. Recommendations are given on the execution of the tests and the interpretation and calibration of the results.

[1]  John A. Hudson,et al.  Comprehensive rock engineering : principles, practice, and projects , 1993 .

[2]  Voichita Bucur,et al.  Acoustics of Wood , 1995 .

[3]  F. Kollmann,et al.  Dynamische Messung der elastischen Holzeigenschaften und der Dämpfung Ein Beitrag zur zerstörungsfreien Werkstoffprüfung , 1960, Holz als Roh- und Werkstoff.

[4]  R. C. Chivers,et al.  ACOUSTIC PROPERTIES AND ANISOTROPY OF SOME AUSTRALIAN WOOD SPECIES , 1991 .

[5]  J. G. Phillips,et al.  Mechanical properties of polymer-impregnated sugar maple. , 1990 .

[6]  Martin Krause,et al.  Elastic wave modes for the assessment of structural timber: ultrasonic echo for building elements and guided waves for pole and pile structures , 2014, Journal of Civil Structural Health Monitoring.

[7]  V. Bucur,et al.  Attenuation of ultrasound in solid wood , 1992 .

[8]  Fabiana G. Oliveira,et al.  A technical note on the relationship between ultrasonic velocity and moisture content of Brazilian hardwood (Goupia glabra) , 2005 .

[9]  Arno Burmester,et al.  Zusammenhang zwischen Schallgeschwindigkeit und morphologischen, physikalischen und mechanischen Eigenschaften von Holz , 1965, Holz als Roh- und Werkstoff.

[10]  Robert J. Ross,et al.  Wood handbook : wood as an engineering material , 2010 .

[11]  S. Smulski,et al.  Relationship of Stress Wave- and Static Bending-Determined Properties of Four Northeastern Hardwoods , 1991 .

[12]  Hota V. S. GangaRao,et al.  Nondestructive evaluation of green wood using stress wave and transverse vibration techniques , 1997 .

[13]  Everaldo Pletz,et al.  NONDESTRUCTIVE EVALUATION OF WOOD USING ULTRASONIC TECHNIQUE , 2002 .

[14]  J. Ilic,et al.  Dynamic MOE of 55 species using small wood beams , 2003, Holz als Roh- und Werkstoff.

[15]  Christian Hellmich,et al.  Determination of Poisson's ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses: Application to metals and wood , 2012 .

[16]  R. Hearmon,et al.  Elasticity of Wood and Plywood , 1948, Nature.

[17]  Jozsef Bodig,et al.  Prediction of elastic parameters for wood , 1973 .

[18]  V. Gryc,et al.  The influence of wood density on longitudinal wave velocity determined by the ultrasound method in comparison to the resonance longitudinal method , 2011, European Journal of Wood and Wood Products.

[19]  V. Bucur,et al.  Elastic constants for wood by an ultrasonic method , 1984, Wood Science and Technology.

[20]  Frederick Field Wangaard The Mechanical Properties of Wood , 2017 .

[21]  John E. Sneckenberger,et al.  Comparison of three equations for predicting stress wave velocity as a function of grain angle , 1991 .

[22]  Rm Elsener,et al.  Material characterization of timber utility poles using experimental approaches , 2014 .

[23]  C. Gerhards,et al.  Longitudinal stress waves for lumber stress grading: factors affecting applications: state of the art , 1982 .

[24]  L. Salmén,et al.  Variations in Transverse Fibre Wall Properties: Relations Between Elastic Properties and Structure , 2000 .

[25]  Jozsef Bodig,et al.  Mechanics of Wood and Wood Composites , 1982 .

[26]  Robert J. Ross,et al.  Nondestructive evaluation of wood , 1994 .

[27]  Keith Crews,et al.  In situ assessment of structural timber using stress-wave measurements , 2014 .

[28]  R. J. Astley,et al.  Modelling the elastic properties of softwood , 2009, Holz als Roh- und Werkstoff.

[29]  A. Mishiro Effect of density on ultrasonic velocity in wood , 1996 .

[30]  P. Niemz,et al.  Determination of Young’s and shear moduli of common yew and Norway spruce by means of ultrasonic waves , 2007, Wood Science and Technology.