Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes

We have developed the formalism necessary to employ the discontinuous-Galerkin approach in generalrelativistic hydrodynamics. The formalism is first presented in a general four-dimensional setting and then specialized to the case of spherical symmetry within a 3 þ 1 splitting of spacetime. As a direct application, we have constructed a one-dimensional code, EDGES, which has been used to assess the viability of these methods via a series of tests involving highly relativistic flows in strong gravity. Our results show that discontinuous-Galerkin methods are able not only to handle strong relativistic shock waves but, at the same time, to attain very high orders of accuracy and exponential convergence rates in smooth regions of the flow. Given these promising prospects and their affinity with a pseudospectral solution of the Einstein equations, discontinuous-Galerkin methods could represent a new paradigm for the accurate numerical modelling in relativistic astrophysics.

[1]  I. Hawke,et al.  Numerical simulations of interfaces in relativistic hydrodynamics , 2009, 0909.4217.

[2]  C. Palenzuela,et al.  Evolutions of Magnetized and Rotating Neutron Stars , 2010, 1001.0575.

[3]  Relativistic hydrodynamics on space - like and null surfaces: Formalism and computations of spherically symmetric space-times , 1999, gr-qc/9902018.

[4]  Jan S. Hesthaven,et al.  Discontinuous Galerkin method for the spherically reduced Baumgarte-Shapiro-Shibata-Nakamura system with second-order operators , 2010, 1008.1820.

[5]  Timothy A. Davis,et al.  An Unsymmetric-pattern Multifrontal Method for Sparse Lu Factorization , 1993 .

[6]  Robert Michael Kirby,et al.  Filtering in Legendre spectral methods , 2008, Math. Comput..

[7]  L. Rezzolla,et al.  Critical phenomena in neutron stars: I. Linearly unstable nonrotating models , 2010, 1007.2809.

[8]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[9]  Three-dimensional numerical general relativistic hydrodynamics. II. Long-term dynamics of single relativistic stars , 2001, gr-qc/0110047.

[10]  R. LeVeque Numerical methods for conservation laws , 1990 .

[11]  J. Miralles,et al.  Numerical relativistic hydrodynamics: Local characteristic approach. , 1991, Physical review. D, Particles and fields.

[12]  Satoshi Matsuoka,et al.  Proceedings of the Second International Symposium on Computing in Object-Oriented Parallel Environments , 1998 .

[13]  Jinchao Xu,et al.  A toy model for testing finite element methods to simulate extreme-mass-ratio binary systems , 2005, gr-qc/0507112.

[14]  M. Aurada,et al.  Convergence of adaptive BEM for some mixed boundary value problem , 2012, Applied numerical mathematics : transactions of IMACS.

[15]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[16]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[17]  B. Giacomazzo,et al.  Accurate evolutions of inspiralling and magnetized neutron-stars: equal-mass binaries , 2010, 1009.2468.

[18]  Erik Schnetter,et al.  Recoil velocities from equal-mass binary-black-hole mergers. , 2007, Physical review letters.

[19]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[20]  A new spherically symmetric general relativistic hydrodynamical code , 1995, astro-ph/9509121.

[21]  M. Ansorg,et al.  Highly accurate calculation of rotating neutron stars , 2001, astro-ph/0111080.

[22]  The trumpet solution from spherical gravitational collapse with puncture gauges , 2010, 1012.3703.

[23]  L. Baiotti,et al.  Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole , 2004, gr-qc/0403029.

[24]  Stephan Rosswog,et al.  Conservative, special-relativistic smoothed particle hydrodynamics , 2009, J. Comput. Phys..

[25]  Scott H. Hawley,et al.  Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.

[26]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: Theory, Computation and Applications , 2011 .

[27]  Michael Dumbser,et al.  Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations , 2009, J. Comput. Phys..

[28]  Timothy A. Davis,et al.  A combined unifrontal/multifrontal method for unsymmetric sparse matrices , 1999, TOMS.

[29]  Jerome Novak,et al.  Combining spectral and shock-capturing methods: A new numerical approach for 3D relativistic core collapse simulations , 2004 .

[30]  Simple equations for general relativistic hydrodynamics in spherical symmetry applied to neutron star collapse , 1991 .

[31]  F. Curtis Michel,et al.  Accretion of matter by condensed objects , 1971 .

[32]  Eitan Tadmor,et al.  Legendre pseudospectral viscosity method for nonlinear conservation laws , 1993 .

[33]  R. F. Tooper Adiabatic Fluid Spheres in General Relativity. , 1965 .

[34]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[35]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[36]  Daoqi Yang,et al.  C++ and Object-Oriented Numeric Computing for Scientists and Engineers , 2000, Springer New York.

[37]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[38]  M. Berger,et al.  Analysis of Slope Limiters on Irregular Grids , 2005 .

[39]  Department of Physics,et al.  WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics , 2007, gr-qc/0701109.

[40]  Chi-Wang Shu,et al.  Numerical Comparison of WENO Finite Volume and Runge–Kutta Discontinuous Galerkin Methods , 2001, J. Sci. Comput..

[41]  S. Noble,et al.  Type II critical phenomena of neutron star collapse , 2007, 0709.3527.

[42]  Chi-Wang Shu,et al.  High order finite difference and finite volume WENO schemes and discontinuous Galerkin methods for CFD , 2001 .

[43]  W. Marsden I and J , 2012 .

[44]  Gui-Qiang G. Chen,et al.  Gauss‐Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws , 2007, 0709.3673.

[45]  Timothy A. Davis,et al.  A column pre-ordering strategy for the unsymmetric-pattern multifrontal method , 2004, TOMS.

[46]  José A. Font,et al.  Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity , 2008, Living reviews in relativity.

[47]  L. Rezzolla,et al.  Computations of primordial black-hole formation , 2004, gr-qc/0412063.

[48]  Parviz Moin,et al.  Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves , 2010, J. Comput. Phys..

[49]  Challenging the paradigm of singularity excision in gravitational collapse. , 2006, Physical review letters.

[50]  J. Novak,et al.  Spectral Methods for Numerical Relativity , 2007, Living reviews in relativity.

[51]  James R. Wilson Numerical Study of Fluid Flow in a Kerr Space , 1972 .

[52]  Relativistic simulations of rotational core collapse I. Methods, initial models, and code tests , 2002, astro-ph/0204288.

[53]  Hermano Frid,et al.  Extended Divergence-Measure Fields and the Euler Equations for Gas Dynamics , 2003 .

[54]  E. Gourgoulhon 1D numerical relativity applied to neutron star collapse , 1992 .

[55]  W. Kastaun High-resolution shock capturing scheme for ideal hydrodynamics in general relativity optimized for quasistationary solutions , 2006 .

[56]  Dusan Agrez,et al.  Dynamics of the frequency estimation in the frequency domain , 2007, Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IEEE Cat. No.04CH37510).

[57]  Kenzo Watanabe,et al.  スイッチド・キャパシタディジタル容量ブリッジ(IEEE Transactions on Instrumentation and Measurement,Vol.IM-33,December,1984) , 1985 .

[58]  William J. Rider,et al.  Revisiting Wall Heating , 2000 .

[59]  P. Cerdá-Durán Numerical viscosity in hydrodynamics simulations in general relativity , 2009, 0912.1774.

[60]  E. Gourgoulhon,et al.  Relativistic formalism to compute quasiequilibrium configurations of nonsynchronized neutron star binaries , 1997 .

[61]  R. Haber,et al.  A spacetime discontinuous Galerkin method for scalar conservation laws , 2004 .

[62]  Zhi J. Wang,et al.  Spectral (Finite) Volume Method for Conservation Laws on Unstructured Grids. Basic Formulation , 2002 .

[63]  Abraham Robinson,et al.  COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS , 1956 .

[64]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[65]  Quasi-radial modes of rotating stars in general relativity , 1999, astro-ph/9908359.

[66]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[67]  B. M. Fulk MATH , 1992 .

[68]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[70]  Smoothed particle hydrodynamics simulations of ultrarelativistic shocks with artificial viscosity , 1999, astro-ph/9904070.

[71]  D. Gottlieb,et al.  The CFL condition for spectral approximations to hyperbolic initial-boundary value problems. , 1991 .

[72]  Mark Sussman,et al.  Tracking discontinuities in hyperbolic conservation laws with spectral accuracy , 2007, J. Comput. Phys..

[73]  Relativistic radiative transfer for spherical flows , 1994, astro-ph/9406055.

[74]  Nonlinear radial oscillations of neutron stars , 2009, 0906.3088.

[75]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[76]  Gerhard Zumbusch,et al.  Finite element, discontinuous Galerkin, and finite difference evolution schemes in spacetime , 2009, 0901.0851.

[77]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[78]  E. Müller,et al.  Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.

[79]  Masaru Shibata,et al.  Collapse of magnetized hypermassive neutron stars in general relativity. , 2006 .

[80]  B. Giacomazzo,et al.  Accurate evolutions of inspiralling neutron-star binaries: assessment of the truncation error , 2009, 0901.4955.

[81]  Harald P. Pfeiffer,et al.  Evolving black hole-neutron star binaries in general relativity using pseudospectral and finite difference methods , 2008, 0809.0002.

[82]  H. Huynh,et al.  Accurate Monotonicity-Preserving Schemes with Runge-Kutta Time Stepping , 1997 .

[83]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[84]  Richard H. White,et al.  Hydrodynamic Calculations of General-Relativistic Collapse , 1966 .

[85]  Miguel A. Aloy,et al.  THE MISSING LINK: MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS , 2011, 1101.4298.

[86]  Carlos F. Sopuerta,et al.  Finite element computation of the gravitational radiation emitted by a pointlike object orbiting a nonrotating black hole , 2005, gr-qc/0512028.

[87]  David L. Meier Multidimensional Astrophysical Structural and Dynamical Analysis. I. Development of a Nonlinear Finite Element Approach , 1999 .