Guaranteed Cost Output Tracking Control for Autonomous Homing Phase of Spacecraft Rendezvous

This paper investigates the problem of robust guaranteed cost output tracking control for the homing phase of spacecraft rendezvous. Based on the Clohessy-Wiltshire (C-W) equations, and by simultaneously considering the practical situations such as parameter uncertainty, output tracking, performance cost and poles assignment, a new relative dynamic model is developed, and a robust guaranteed cost output tracking control problem is formulated. Then, by a Lyapunov approach, the existence conditions for admissible controllers are formulated in the form of linear matrix inequalities (LMIs), and the controller design is cast into a convex optimization problem subject to LMI constraints. With the obtained controllers, the homing phase can be completed with a guaranteed cost. An illustrative example is provided to show the effectiveness of the proposed controller design method.

[1]  U. Shaked,et al.  Stability and guaranteed cost control of uncertain discrete delay systems , 2005 .

[2]  Panagiotis Tsiotras,et al.  Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions , 2003 .

[3]  D. Jezewski,et al.  An analytic approach to optimal rendezvous using Clohessy-Wiltshire equations , 1979 .

[4]  Hamid Reza Karimi,et al.  Observer-Based Mixed H₂/H ∞ Control Design for Linear Systems with Time-Varying Delays , 2008 .

[5]  Kamesh Subbarao,et al.  Adaptive Output Feedback Control for Spacecraft Rendezvous and Docking Under Measurement Uncertainty , 2006 .

[6]  Ya-zhong Luo,et al.  Optimal robust linearized impulsive rendezvous , 2007 .

[7]  Huijun Gao,et al.  Multi-Objective Robust $H_{\infty}$ Control of Spacecraft Rendezvous , 2009, IEEE Transactions on Control Systems Technology.

[8]  Wen-June Wang,et al.  Decentralized robust control design with insufficient number of controllers , 1996 .

[9]  Huijun Gao,et al.  A delay-dependent approach to robust H∞ filtering for uncertain discrete-time state-delayed systems , 2004, IEEE Trans. Signal Process..

[10]  Huijun Gao,et al.  ${\cal H}_{\infty}$ Estimation for Uncertain Systems With Limited Communication Capacity , 2007, IEEE Transactions on Automatic Control.

[11]  W. H. Clohessy,et al.  Terminal Guidance System for Satellite Rendezvous , 2012 .

[12]  Wang Zidong,et al.  Robust controller design for uncertain linear systems with circular pole constraints , 1996 .

[13]  Peng Shi,et al.  Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay , 1999, IEEE Trans. Autom. Control..

[14]  Ya-zhong Luo,et al.  Spacecraft optimal rendezvous controller design using simulated annealing , 2005 .

[15]  Minyue Fu,et al.  Guaranteed cost control of uncertain nonlinear systems via polynomial lyapunov functions , 2002, IEEE Trans. Autom. Control..

[16]  Behrouz Ebrahimi,et al.  Optimal sliding-mode guidance with terminal velocity constraint for fixed-interval propulsive maneuvers , 2008 .

[17]  R. Cassady An analysis of orbit maneuvering capabilities using arcjet propulsion , 1988 .

[18]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[19]  Lubomír Bakule,et al.  Robust Overlapping Guaranteed Cost Control of Uncertain State-Delay Discrete-Time Systems , 2006, IEEE Transactions on Automatic Control.

[20]  B. H. Billik,et al.  Some optimal low-acceleration rendezvous maneuvers , 1964 .

[21]  Heinz Unbehauen,et al.  Multiobjective control of a four-link flexible manipulator: a robust H∞ approach , 2002, IEEE Trans. Control. Syst. Technol..

[22]  Hamid Reza Karimi,et al.  Observer-Based Mixed H2/H∞ Control Design for Linear Systems with Time-Varying Delays: An LMI Approach , 2008 .

[23]  P. Shi,et al.  Gain-scheduled stabilisation of linear parameter-varying systems with time-varying input delay , 2007 .

[24]  Huijun Gao,et al.  Parameter-dependent robust stability of uncertain time-delay systems , 2007 .

[25]  Zidong Wang Robust H∞ State Feedback Control With Regional Pole Constraints: An Algebraic Riccati Equation Approach , 1998 .

[26]  Jianliang Wang,et al.  Reliable robust flight tracking control: an LMI approach , 2002, IEEE Trans. Control. Syst. Technol..

[27]  Y. Lei,et al.  Optimal Multi-Objective Linearized Impulsive Rendezvous , 2007 .

[28]  Derek F Lawden,et al.  Optimal trajectories for space navigation , 1964 .

[29]  P. Shi On H∞ Control Design for Singular Continuous-Time Delay Systems with Parametric Uncertainties , 2004 .

[30]  Hamid Reza Karimi,et al.  Robust mixed H2/H∞ delayed state feedback control of uncertain neutral systems with time‐varying delays , 2008 .

[31]  Huijun Gao,et al.  Delay-dependent output-feedback stabilisation of discrete-time systems with time-varying state delay , 2004 .