High Precision of Spike Timing across Olfactory Receptor Neurons Allows Rapid Odor Coding in Drosophila

Summary In recent years, it has become evident that olfaction is a fast sense, and millisecond short differences in stimulus onsets are used by animals to analyze their olfactory environment. In contrast, olfactory receptor neurons are thought to be relatively slow and temporally imprecise. These observations have led to a conundrum: how, then, can an animal resolve fast stimulus dynamics and smell with high temporal acuity? Using parallel recordings from olfactory receptor neurons in Drosophila, we found hitherto unknown fast and temporally precise odorant-evoked spike responses, with first spike latencies (relative to odorant arrival) down to 3 ms and with a SD below 1 ms. These data provide new upper bounds for the speed of olfactory processing and suggest that the insect olfactory system could use the precise spike timing for olfactory coding and computation, which can explain insects' rapid processing of temporal stimuli when encountering turbulent odor plumes.

[1]  Jeffry S. Isaacson,et al.  From Dendrite to Soma: Dynamic Routing of Inhibition by Complementary Interneuron Microcircuits in Olfactory Cortex , 2010, Neuron.

[2]  Martin P. Nawrot,et al.  Parallel Processing via a Dual Olfactory Pathway in the Honeybee , 2013, The Journal of Neuroscience.

[3]  G. Shepherd,et al.  Responses of olfactory receptor cells to step pulses of odour at different concentrations in the salamander. , 1978, The Journal of physiology.

[4]  Leslie B. Vosshall,et al.  Insect olfactory receptors are heteromeric ligand-gated ion channels , 2008, Nature.

[5]  Fred Wolf,et al.  Olfactory Coding with Patterns of Response Latencies , 2010, Neuron.

[6]  Paul Szyszka,et al.  A High-Bandwidth Dual-Channel Olfactory Stimulator for Studying Temporal Sensitivity of Olfactory Processing , 2017, Chemical senses.

[7]  R. Menzel,et al.  GABA‐immunoreactive neurons in the mushroom bodies of the honeybee: An electron microscopic study , 2001, The Journal of comparative neurology.

[8]  T. Baker,et al.  Moth olfactory trichoid sensilla exhibit nanoscale-level heterogeneity in surface lipid properties. , 2010, Arthropod structure & development.

[9]  Barry J. Dickson,et al.  Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System , 2005, Current Biology.

[10]  M. Konishi,et al.  A circuit for detection of interaural time differences in the brain stem of the barn owl , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Andrew C. Lin,et al.  Sparse, Decorrelated Odor Coding in the Mushroom Body Enhances Learned Odor Discrimination , 2014, Nature Neuroscience.

[12]  James M. Jeanne,et al.  Convergence, Divergence, and Reconvergence in a Feedforward Network Improves Neural Speed and Accuracy , 2015, Neuron.

[13]  Bill S Hansson,et al.  Elucidating the Neuronal Architecture of Olfactory Glomeruli in the Drosophila Antennal Lobe. , 2016, Cell reports.

[14]  J. Farrell,et al.  Filament-Based Atmospheric Dispersion Model to Achieve Short Time-Scale Structure of Odor Plumes , 2002 .

[15]  Michael H. Dickinson,et al.  Plume-Tracking Behavior of Flying Drosophila Emerges from a Set of Distinct Sensory-Motor Reflexes , 2014, Current Biology.

[16]  Eric E. Thomson,et al.  Encoding and Decoding Touch Location in the Leech CNS , 2006, The Journal of Neuroscience.

[17]  K. Kaissling,et al.  Die Reaktionsweise und das Reaktionsspektrum von Riechzellen bei Antheraea pernyi (Lepidoptera, Saturniidae) , 1964, Zeitschrift für vergleichende Physiologie.

[18]  C Giovanni Galizia,et al.  DoOR 2.0 - Comprehensive Mapping of Drosophila melanogaster Odorant Responses , 2015, Scientific Reports.

[19]  R. C. Gerkin,et al.  High-speed odor transduction and pulse tracking by insect olfactory receptor neurons , 2014, Proceedings of the National Academy of Sciences.

[20]  T. Baker,et al.  Moth uses fine tuning for odour resolution , 1998, Nature.

[21]  G. Laurent,et al.  Adaptive regulation of sparseness by feedforward inhibition , 2007, Nature Neuroscience.

[22]  Aurel A. Lazar,et al.  System identification of Drosophila olfactory sensory neurons , 2011, Journal of Computational Neuroscience.

[23]  R. Benton,et al.  Ionotropic and metabotropic mechanisms in chemoreception: 'chance or design'? , 2010, EMBO reports.

[24]  Glenn C. Turner,et al.  Olfactory representations by Drosophila mushroom body neurons. , 2008, Journal of neurophysiology.

[25]  Katherine I. Nagel,et al.  Biophysical mechanisms underlying olfactory receptor neuron dynamics , 2010, Nature Neuroscience.

[26]  G. Laurent,et al.  Normalization for Sparse Encoding of Odors by a Wide-Field Interneuron , 2011, Science.

[27]  Randolf Menzel,et al.  Rapid odor processing in the honeybee antennal lobe network , 2009 .

[28]  S. Laughlin,et al.  Temperature and the temporal resolving power of fly photoreceptors , 2000, Journal of Comparative Physiology A.

[29]  A. Simpson,et al.  What is the best index of detectability? , 1973, Psychological Bulletin.

[30]  L. Vosshall,et al.  Bilateral olfactory sensory input enhances chemotaxis behavior , 2008, Nature Neuroscience.

[31]  M. Hellwig,et al.  The Rate of Concentration Change and How It Determines the Resolving Power of Olfactory Receptor Neurons , 2016, Front. Physiol..

[32]  M. Stopfer,et al.  Functional Analysis of a Higher Olfactory Center, the Lateral Horn , 2012, The Journal of Neuroscience.

[33]  Inés Samengo,et al.  Spike-timing precision underlies the coding efficiency of auditory receptor neurons. , 2006, Journal of neurophysiology.

[34]  A. Guo,et al.  The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila. , 2013, Biochemical and biophysical research communications.

[35]  Regine Heller,et al.  Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels , 2008, Nature.

[36]  Matthew C Smear,et al.  Precise olfactory responses tile the sniff cycle , 2011, Nature Neuroscience.

[37]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[38]  Masakazu Konishi,et al.  Mechanisms of sound localization in the barn owl (Tyto alba) , 1979, Journal of comparative physiology.

[39]  John Murtis,et al.  Odor Plumes and How Insects Use Them , 1992 .

[40]  Jeffrey A. Riffell,et al.  Flower discrimination by pollinators in a dynamic chemical environment , 2014, Science.

[41]  Dawnis M. Chow,et al.  Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight , 2009, Current Biology.

[42]  G M Shepherd,et al.  Time course of the membrane current underlying sensory transduction in salamander olfactory receptor neurones. , 1990, The Journal of physiology.

[43]  B. Hansson,et al.  Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity , 2012, Front. Cell. Neurosci..

[44]  W. Hangartner Spezifität und Inaktivierung des Spurpheromons von Lasius fuliginosus Latr. und Orientierung der Arbeiterinnen im Duftfeld , 1967, Zeitschrift für vergleichende Physiologie.

[45]  John R. Carlson,et al.  Odor Coding in the Drosophila Antenna , 2001, Neuron.

[46]  Rainer W Friedrich,et al.  Temporal Dynamics and Latency Patterns of Receptor Neuron Input to the Olfactory Bulb , 2006, The Journal of Neuroscience.

[47]  G. Laurent,et al.  GABAergic synapses in the antennal lobe and mushroom body of the locust olfactory system , 1996, The Journal of comparative neurology.

[48]  P. Duchamp-Viret,et al.  Odor response properties of rat olfactory receptor neurons. , 1999, Science.

[49]  Troy W. Margrie,et al.  Psychophysical properties of odor processing can be quantitatively described by relative action potential latency patterns in mitral and tufted cells , 2012, Front. Syst. Neurosci..

[50]  Jamey S. Kain,et al.  Asymmetric neurotransmitter release enables rapid odor lateralization in Drosophila , 2012, Nature.

[51]  Glenn C. Turner,et al.  Integration of the olfactory code across dendritic claws of single mushroom body neurons , 2013, Nature Neuroscience.

[52]  Paul Szyszka,et al.  The Speed of Smell: Odor-Object Segregation within Milliseconds , 2012, PloS one.

[53]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[54]  Arnaud Delorme,et al.  Spike-based strategies for rapid processing , 2001, Neural Networks.

[55]  John R. Carlson,et al.  Intensity Invariant Dynamics and Odor-Specific Latencies in Olfactory Receptor Neuron Response , 2013, The Journal of Neuroscience.

[56]  N. Vickers Mechanisms of animal navigation in odor plumes. , 2000, The Biological bulletin.

[57]  Paul Szyszka,et al.  Mind the Gap: Olfactory Trace Conditioning in Honeybees , 2011, The Journal of Neuroscience.

[58]  R. Steinbrecht Pore structures in insect olfactory sensilla: A review of data and concepts , 1997 .

[59]  Peter J. Clyne,et al.  Odor Coding in a Model Olfactory Organ: TheDrosophila Maxillary Palp , 1999, The Journal of Neuroscience.

[60]  Armin J. Hinterwirth,et al.  Olfactory receptors on the cockroach antenna signal odour ON and odour OFF by excitation , 2005, The European journal of neuroscience.

[61]  Alexander Borst,et al.  Osmotropotaxis inDrosophila melanogaster , 1982, Journal of comparative physiology.

[62]  A. Dubs,et al.  The dynamics of phototransduction in insects , 1984, Journal of Comparative Physiology A.

[63]  Rachel I. Wilson,et al.  Origins of correlated activity in an olfactory circuit , 2009, Nature Neuroscience.

[64]  M. Vergassola,et al.  Odor Landscapes in Turbulent Environments , 2014, 1411.3507.

[65]  S. Cassenaer,et al.  Neural Encoding of Odors during Active Sampling and in Turbulent Plumes , 2015, Neuron.