A BLOCK-PARALLEL CONJUGATE GRADIENT METHOD FOR SEPARABLE QUADRATIC PROGRAMMING PROBLEMS^1

For a large-scale quadratic programming problem with separable objective function, a variant of the conjugate gradient method can effectively be applied to the dual problem. In this paper, we consider a block-parallel modification of the conjugate gradient method, which is suitable for implementation on a parallel computer. More precisely, the method proceeds in a block Jacobi manner and executes the conjugate gradient iteration to solve quadratic programming subproblems associated with respective blocks. We implement the method on a Connection Machine Model CM-5 in the Single-Program Multiple-Data model of computation. We report some numerical results, which show that the proposed method is effective particularly for problems with some block structure.

[1]  Stavros A. Zenios,et al.  Proximal minimizations with D-functions and the massively parallel solution of linear network programs , 1993, Comput. Optim. Appl..

[2]  Jonathan Eckstein,et al.  The Alternating Step Method for Monotropic Programming on the Connection Machine CM-2 , 1993, INFORMS J. Comput..

[3]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[4]  Michael C. Ferris Parallel Constraint Distribution in Convex Quadratic Programming , 1994, Math. Oper. Res..

[5]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[6]  Masao Fukushima,et al.  A parallel descent algorithm for convex programming , 1996, Comput. Optim. Appl..

[7]  P. Tseng,et al.  On the convergence of a matrix splitting algorithm for the symmetric monotone linear complementarity problem , 1991 .

[8]  Magnus R. Hestenes,et al.  Conjugate Direction Methods in Optimization , 1980 .

[9]  Gene H. Golub,et al.  Scientific computing: an introduction with parallel computing , 1993 .

[10]  Alfredo N. Iusem On the convergence of iterative methods for symmetric linear complementarity problems , 1993, Math. Program..

[11]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[12]  Stavros A. Zenios,et al.  Data parallel computing for network-structured optimization problems , 1994, Comput. Optim. Appl..

[13]  Masao Fukushima,et al.  Application of the alternating direction method of multipliers to separable convex programming problems , 1992, Comput. Optim. Appl..

[14]  Robert R. Meyer,et al.  Parallel optimization for traffic assignment , 1988, Math. Program..

[15]  Olvi L. Mangasarian,et al.  Asynchronous parallel successive overrelaxation for the symmetric linear complementarity problem , 1988, Math. Program..

[16]  Masao Fukushima,et al.  A multisplitting method for symmetric linear complementarity problems , 1995 .

[17]  Masao Fukushima,et al.  The primal douglas-rachford splitting algorithm for a class of monotone mappings with application to the traffic equilibrium problem , 1996, Math. Program..

[18]  Masao Fukushima,et al.  Some Reformulations and Applications of the Alternating Direction Method of Multipliers , 1994 .

[19]  O. Mangasarian,et al.  Parallel successive overrelaxation methods for symmetric linear complementarity problems and linear programs , 1987 .

[20]  O. Mangasarian,et al.  Parallel gradient projection successive overrelaxation for symmetric linear complementarity problems and linear programs , 1988 .

[21]  Paul Tseng,et al.  Error Bound and Convergence Analysis of Matrix Splitting Algorithms for the Affine Variational Inequality Problem , 1992, SIAM J. Optim..

[22]  Yair Censor,et al.  Parallel application of block-iterative methods in medical imaging and radiation therapy , 1988, Math. Program..

[23]  Yair Censor,et al.  Massively Parallel Row-Action Algorithms for Some Nonlinear Transportation Problems , 1991, SIAM J. Optim..

[24]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..