Satellite-based high latitude snow volume trend, variability and contribution to sea level over 1989/2006

Abstract Snow volume change over the 1989/2006 period has been derived from Special Sensor Microwave/Imager (SSM/I) radiometric measurements for all land surfaces above 50°N, except Greenland. The mean annual snow volumes over the whole study domain, Eurasia and North America are respectively equal to 3713 km 3 , 2272 km 3 and 1441 km 3 , for the Pan Arctic regions, over this 18-year time period. While the snow volume exhibits a statistically significant negative trend (−9.7 ± 3.8 km 3  yr −1 , p-value = 0.02) over North America, it presents a positive, but not statistically significant trend (11.3 ± 9.3 km 3  yr −1 , p-value = 0.25) over Eurasia. These opposite variations can be related to different regional climatic conditions over these two regions: over Eurasia, snow depth is mainly influenced by the Arctic Oscillation (AO) and the Atlantic Multidecadal Oscillation (AMO)-correlation coefficient = 0.68 between the SSM/I-derived snow volume and a linear combination of AO and AMO indices, whereas over North America snow depth is mainly influenced by the Pacific North American (PNA) pattern and the AMO-correlation coefficient = 0.75 for a linear combination of the PNA and AMO indices. This study confirms that snow volume is a key driver of the sea level seasonal cycle, but net snow volume trend for the Pan Arctic regions indicates a negligible and not statistically significant contribution to sea level rise (−0.004 ± 0.009 mm yr −1 , p-value = 0.88 once converted into sea level).

[1]  K. Trenberth,et al.  Observations: Surface and Atmospheric Climate Change , 2007 .

[2]  Jack T. Beavers,et al.  Mass balance , 2019, Principles of Glacier Mechanics.

[3]  A. Dobson An introduction to generalized linear models , 1990 .

[4]  Adam A. Scaife,et al.  Climate impacts of the Atlantic Multidecadal Oscillation , 2006 .

[5]  Frédéric Frappart,et al.  Evolution of high‐latitude snow mass derived from the GRACE gravimetry mission (2002–2004) , 2006 .

[6]  Paul Berrisford,et al.  Towards a climate data assimilation system: status update of ERA-interim , 2008 .

[7]  Y. Orsolini,et al.  Role of Eurasian snow cover in wintertime circulation: Decadal simulations forced with satellite observations , 2009 .

[8]  Ross D. Brown,et al.  Recent Northern Hemisphere snow cover extent trends and implications for the snow‐albedo feedback , 2007 .

[9]  P. Kushner,et al.  Stratosphere-troposphere coupling and links with eurasian land surface variability , 2007 .

[10]  Libo Wang,et al.  A multi‐data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008 , 2010 .

[11]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[12]  Ross D. Brown,et al.  Northern Hemisphere Snow Cover Variability and Change, 1915-97. , 2000 .

[13]  David Robinson,et al.  Gridded North American monthly snow depth and snow water equivalent for GCM evaluation , 2003 .

[14]  J. Wallace,et al.  Teleconnections in the Geopotential Height Field during the Northern Hemisphere Winter , 1981 .

[15]  J. Wallace,et al.  The Arctic oscillation signature in the wintertime geopotential height and temperature fields , 1998 .

[16]  Jeffrey P. Walker,et al.  THE GLOBAL LAND DATA ASSIMILATION SYSTEM , 2004 .

[17]  Byron D. Tapley,et al.  Seasonal global water mass budget and mean sea level variations , 1998 .

[18]  J. Harte,et al.  Energy and water. , 1978, Science.

[19]  D. Dee,et al.  Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis , 2009 .

[20]  Edward G. Josberger,et al.  Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm , 2004 .

[21]  Y. Xue,et al.  Modeling of land surface evaporation by four schemes and comparison with FIFE observations , 1996 .

[22]  Edward G. Josberger,et al.  Analysis of Ground-Measured and Passive-Microwave-Derived Snow Depth Variations in Midwinter across the Northern Great Plains , 2005 .

[23]  A. Frei,et al.  North American Temperature, Snowfall, and Snow-Depth Response to Winter Climate Modes , 2010 .

[24]  Manuela Grippa,et al.  The impact of simulated soil temperatures on the estimation of snow depth over Siberia from SSM/I compared to a multi-model climatology , 2006 .

[25]  Anny Cazenave,et al.  Regional and interannual variability in sea level over 2002–2009 based on satellite altimetry, Argo float data and GRACE ocean mass , 2010 .

[26]  Peter Toose,et al.  Development of a tundra-specific snow water equivalent retrieval algorithm for satellite passive microwave data , 2010 .

[27]  Guillaume Ramillien,et al.  Water balance of the Arctic drainage system using GRACE gravimetry products , 2011 .

[28]  Brian Menounos,et al.  Contribution of Alaskan glaciers to sea-level rise derived from satellite imagery , 2010 .

[29]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[30]  G. Gong,et al.  North American Snow Depth and Climate Teleconnection Patterns , 2009 .

[31]  Frédéric Frappart,et al.  Time variations of land water storage from an inversion of 2 years of GRACE geoids , 2005 .

[32]  Edward G. Josberger,et al.  Northern Great Plains 1996/97 seasonal evolution of snowpack parameters from satellite passive-microwave measurements , 2002, Annals of Glaciology.

[33]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[34]  R A Kerr,et al.  A North Atlantic Climate Pacemaker for the Centuries , 2000, Science.

[35]  C. Mann,et al.  A Practical Treatise on Diseases of the Skin , 1889, Atlanta Medical and Surgical Journal (1884).

[36]  Edward G. Josberger,et al.  A satellite snow depth multi-year average derived from SSM/I for the high latitude regions , 2008 .

[37]  A. Ohmura,et al.  Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004 , 2006 .

[38]  O. Bulygina,et al.  Changes in snow cover over Northern Eurasia in the last few decades , 2009 .

[39]  Thomas L. Mote,et al.  Spatial variability and trends in observed snow depth over North America , 2006 .

[40]  A. Cazenave,et al.  Global ocean mass variation, continental hydrology and the mass balance of Antarctica Ice Sheet at seasonal time scale , 2000 .

[41]  Gilles Larnicol,et al.  On the Use of Satellite Altimeter Data in Argo Quality Control , 2009 .

[42]  A. Cazenave,et al.  Annual cycle in mean sea level from Topex Poseidon and ERS-1: inference on the global hydrological cycle , 1999 .

[43]  Manuela Grippa,et al.  Comparison between the interannual variability of snow parameters derived from SSM/I and the Ob river discharge , 2005 .

[44]  Daqing Yang,et al.  Streamflow response to seasonal snow cover extent changes in large Siberian watersheds , 2003 .

[45]  Thomas R. Karl,et al.  State of the ground : Climatology and changes during the past 69 years over northern eurasia for a rarely used measure of snow cover and frozen land , 2006 .

[46]  G. Gong,et al.  Observed Inconsistencies between Snow Extent and Snow Depth Variability at Regional/Continental Scales , 2008 .

[47]  A. Cazenave,et al.  Contribution of climate-driven change in continental water storage to recent sea-level rise , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Dudley F. Foster,et al.  Global Snow Depth Climatology , 1988 .

[49]  Christoph C. Raible,et al.  Climate change: Water cycle shifts gear , 2005, Nature.

[50]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[51]  Alberto M. Mestas-Nuñez,et al.  The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental U.S. , 2001 .

[52]  Anny Cazenave,et al.  Contemporary sea level rise. , 2010, Annual review of marine science.

[53]  O. E. Tveito,et al.  Distribution of snow cover over Northern Eurasia , 2005 .