An ab initio study of Xe-NO(X2II) and Xe-NO(A2Σ+) potential energy surfaces

Abstract The potential energy surfaces (PESs) of Xe–NO(X2II) and Xe–NO(A2Σ+) complexes have been obtained using highly accurate ab initio calculations. Analytical representations of these PESs were obtained using a Legendre polynomial interpolation. In the ground state, the surfaces A′ and A″ show two linear wells at short distances (4.0–4.5 A) with energies between –67 and –135 cm–1. The surface A′, unlike that of A″, presents a T-shape well at –85 cm–1. To evaluate the influence of corrections for quadruple excitations on the topology of the Xe–NO(A2Σ+) PES, calculations were performed with and without considering corrections for quadruple excitations. Both surfaces present two linear wells between 4.9 and 6.8 A but when considering corrections for quadruple excitations the wells are more than twice as deep (–64 and –40 cm–1) as when not considering these corrections (–25 and –20 cm–1).

[1]  V. A. Apkarian,et al.  Two‐photon induced exciton mediated dissociation of N2O and photomobility of O atoms in crystalline Xe , 1992 .

[2]  Luigi Bonacina,et al.  Ultrafast expansion and vibrational coherences of electronic 'Bubbles' in solid neon , 2002 .

[3]  Majed Chergui,et al.  Femtosecond transition state spectroscopy of solids: electronic 'bubble' formation in solid hydrogen , 1997 .

[4]  Hans-Joachim Werner,et al.  An accurate multireference configuration interaction calculation of the potential energy surface for the F+H2→HF+H reaction , 1996 .

[5]  L. Bonacina,et al.  Lattice response of quantum solids to an impulsive local perturbation. , 2005, Physical Review Letters.

[6]  Nikolaus Schwentner,et al.  Rydberg states in quantum crystals NO in solid H2 , 1997 .

[7]  Yoshihiro Sumiyoshi,et al.  Intermolecular potential energy surface of Ar-NO. , 2007, The Journal of chemical physics.

[8]  V. A. Apkarian,et al.  ATOMIC OXYGEN IN CRYSTALLINE KR AND XE. II: ADIABATIC POTENTIAL ENERGY SURFACES , 1994 .

[9]  Richard D. Etters,et al.  Calculation of the spectral transition frequencies of matrix-isolated hydrogen, deuterium, and hydrogen deuteride impurities in solid krypton and xenon under pressure , 1987 .

[10]  Donald G. Truhlar,et al.  Potential energy surfaces of NaFH , 1998 .

[11]  V. A. Apkarian,et al.  Electronic spectroscopy of oxygen atoms trapped in solid xenon , 1992 .

[12]  V. A. Apkarian,et al.  Many Body Potentials of an Open Shell Atom: Spectroscopy of Spin-Orbit Transitions of Iodine in Crystalline Xe and Kr. , 1994 .

[13]  J. Rubayo-Soneira,et al.  Study of the structural photoinduced dynamics of a solid Kr matrix with an NO impurity , 2003 .

[14]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[15]  V. A. Apkarian,et al.  Oriented geminate recombination of Cl2 in solid xenon at high pressure , 1992 .

[16]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[17]  Craig C. Martens,et al.  Nanoscale shock wave generation by photodissociation of impurities in solids: A molecular dynamics study , 1995 .

[18]  Pablo Villarreal,et al.  QUASICLASSICAL DYNAMICS OF THE I2-NE2 VIBRATIONAL PREDISSOCIATION : A COMPARISON WITH EXPERIMENT , 1996 .

[19]  Majed Chergui,et al.  Nonadiabatic Dynamics of Excited Hg(3P1) in Ar Matrixes , 2003 .

[20]  G. Chałasiński,et al.  State of the Art and Challenges of the ab Initio Theory of Intermolecular Interactions. , 2000, Chemical reviews.

[21]  Alexander Goldberg,et al.  Structural relaxation dynamics of electronically excited XeArN clusters , 1997 .

[22]  Majed Chergui,et al.  Ultrafast structural dynamics in electronically excited solid neon. II. Molecular-dynamics simulations of the electronic bubble formation , 2003 .

[23]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[24]  Ramón Hernández-Lamoneda,et al.  Interaction of NO(A2Sigma+) with rare gas atoms: potential energy surfaces and spectroscopy. , 2008, The Journal of chemical physics.

[25]  R. G. Rothwell,et al.  Photoelectron spectroscopy of krypton and xenon clusters , 1991 .

[26]  Craig C. Martens,et al.  Simulation of ultrafast dynamics and pump–probe spectroscopy using classical trajectories , 1996 .

[27]  Vincenzo Aquilanti,et al.  Molecular dynamics simulations and hyperspherical mode analysis of NO in Kr crystals with the use of ab initio potential energy surfaces for the Kr‐NO complex , 2008 .

[28]  Louis E. Brus,et al.  Rydberg states in condensed phases: Evidence for small ’’bubble’’ formation around NO 3sσ (A 2Σ+) in solid rare gases , 1977 .

[29]  Majed Chergui,et al.  Ultrafast dynamics of Rydberg states in the condensed phase , 1996 .

[30]  Nikolaus Schwentner,et al.  Rydberg fluorescence of NO trapped in rare gas matrices , 1988 .

[31]  Kenneth Haug,et al.  The absorption spectrum of a potassium atom in a Xe cluster , 1991 .

[32]  Nikolaus Schwentner,et al.  Nonradiative Rydberg↔valence relaxation of NO trapped in Ar, Kr, and Xe matrices , 1989 .

[33]  V. A. Apkarian,et al.  Molecular Photodynamics in Rare Gas Solids. , 1999, Chemical reviews.

[34]  Robert M. Whitnell,et al.  Quantum mechanics of small Ne, Ar, Kr, and Xe clusters , 1991 .

[35]  A. I. Katz,et al.  Photodynamics in chlorine-doped xenon under high pressures: a diamond anvil cell study , 1990 .

[36]  Nikolaus Schwentner,et al.  Rydberg states of NO trapped in rare gas matrices , 1986 .

[37]  Majed Chergui,et al.  Spectroscopy and energy relaxation processes of Hg-doped solid neon, argon, and xenon , 2000 .

[38]  Peter T. Cummings,et al.  Classical dynamics description of low energy cascades in solids: Atomic ejection from amorphous argon , 1989 .

[39]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[40]  Ramón Hernández-Lamoneda,et al.  The intermolecular potential of NO(A2Σ)–Ne: An ab initio study , 2006 .

[41]  Henrik Kunttu,et al.  Photogeneration of ions via delocalized charge transfer states. I. Xe2H+ and Xe2D+ in solid Xe , 1992 .

[42]  Daniel H. Robertson,et al.  Determination of the structure of mixed argon--xenon clusters using a finite-temperature, lattice-based Monte Carlo method , 1989 .

[43]  Koichi Yamashita,et al.  Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity. , 2007, The Journal of chemical physics.

[44]  Jesús Rubayo-Soneira,et al.  Dynamics of structural relaxation upon Rydberg excitation of an NO impurity in rare gas solid matrices , 2005 .

[45]  J. V. D. Biesen,et al.  Angle dependent interaction potentials for NOAr, NOKr and NOXe derived from various total collision cross section data , 1980 .

[46]  Majed Chergui,et al.  The medium response to an impulsive redistribution of charge in solid argon: Molecular dynamics simulations and normal mode analysis , 2001 .

[47]  Nikolaus Schwentner,et al.  Cage effect on the photodissociation of water in xenon matrixes , 1991 .

[48]  V. A. Apkarian,et al.  Effect of pressure on molecular photodissociation in matrices: Molecular dynamics simulations of Cl2 in Xe , 1993 .

[49]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[50]  Nikolaus Schwentner,et al.  Intramolecular electronic-to-vibrational energy conversion in NO trapped in Xe matrices , 1988 .

[51]  J. C. Palacio,et al.  NO in Kr and Xe solids: Molecular dynamics and normal mode analysis , 2005 .

[52]  V. Aquilanti,et al.  Normal and hyperspherical mode analysis of NO-doped Kr crystals upon Rydberg excitation of the impurity. , 2007, The Journal of chemical physics.

[53]  Michael C. Heaven,et al.  Ab initio molecular-orbital study of the trichlorine radical, Cl3 , 1998 .

[54]  L. Bonacina,et al.  The ultrafast structural response of solid parahydrogen: a complementary experimental/simulation investigation. , 2006, The Journal of chemical physics.

[55]  Paul Scheier,et al.  Critical appearance size of doubly charged Xe clusters revisited , 1989 .

[56]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.