Quantification of Einstein-Podolski-Rosen steering for two-qubit states

In the last few years, several criteria to identify Einstein-Podolsky-Rosen steering have been proposed and experimentally implemented. On the operational side, however, the evaluation of the steerability degree of a given state has shown to be a difficult task and only a few results are known. In this work, we propose a measure of steering that is based on the maximal violation of well-established steering inequalities. Applying this approach to two-qubit states, we managed to derive simple closed formulas for steering in the two- and three-measurement scenarios. We also provide closed formulas for quantifiers of Bell nonlocality in the respective scenarios. Finally, we show that our measures of steering verify the entanglement-steering-nonlocality hierarchy and reproduce results reported so far.

[1]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[2]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[3]  Daniel Cavalcanti,et al.  Inequivalence of entanglement, steering, and Bell nonlocality for general measurements , 2015, 1501.03332.

[4]  Ting Yu,et al.  Evolution from entanglement to decoherence of bipartite mixed "X" states , 2005, Quantum Inf. Comput..

[5]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[6]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[7]  E. Schrödinger Probability relations between separated systems , 1936, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[9]  Miguel Navascués,et al.  Quantifying Einstein-Podolsky-Rosen steering. , 2013, Physical review letters.

[10]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[11]  N. Brunner,et al.  One-way Einstein-Podolsky-Rosen Steering , 2014, 1402.3607.

[12]  Jing-Ling Chen,et al.  All-Versus-Nothing Proof of Einstein-Podolsky-Rosen Steering , 2012, Scientific Reports.

[13]  Tamás Vértesi,et al.  Joint measurability, Einstein-Podolsky-Rosen steering, and Bell nonlocality. , 2014, Physical review letters.

[14]  E. A. Fonseca,et al.  Measure of nonlocality which is maximal for maximally entangled qutrits , 2015 .

[15]  Eric G. Cavalcanti,et al.  Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations , 2013, 1303.7432.

[16]  Mojtaba Jafarpour,et al.  A useful strong lower bound on two-qubit concurrence , 2011, Quantum Information Processing.

[17]  V. Scarani,et al.  One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering , 2011, 1109.1435.

[18]  Rodrigo Gallego,et al.  The Resource Theory of Steering , 2014, TQC.

[19]  Sae Woo Nam,et al.  Conclusive quantum steering with superconducting transition-edge sensors , 2011, Nature Communications.

[20]  Some Sankar Bhattacharya,et al.  Optimal quantum violation of Clauser–Horne–Shimony–Holt like steering inequality , 2015, 1503.04649.

[21]  Le Phuc Thinh,et al.  Quantum randomness extraction for various levels of characterization of the devices , 2014, 1401.4243.

[22]  A. C. Doherty,et al.  Entanglement, einstein-podolsky-rosen correlations, bell nonlocality, and steering , 2007, 0709.0390.

[23]  J. Watrous,et al.  Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering. , 2015, Physical review letters.

[24]  Antony R. Lee,et al.  Quantification of Gaussian quantum steering. , 2014, Physical review letters.

[25]  Gerardo Adesso,et al.  Hierarchy of Steering Criteria Based on Moments for All Bipartite Quantum Systems. , 2015, Physical review letters.

[26]  Rupert Ursin,et al.  Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering , 2011, 1111.0760.

[27]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[28]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[29]  S. Luo Quantum discord for two-qubit systems , 2008 .

[30]  Otfried Gühne,et al.  Joint measurability of generalized measurements implies classicality. , 2014, Physical review letters.

[31]  N. Gisin,et al.  A relevant two qubit Bell inequality inequivalent to the CHSH inequality , 2003, quant-ph/0306129.

[32]  D. J. Saunders,et al.  Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole , 2011 .

[33]  Ming-Liang Hu,et al.  Relations between entanglement, Bell-inequality violation and teleportation fidelity for the two-qubit X states , 2012, Quantum Inf. Process..

[34]  Eric G. Cavalcanti,et al.  Analog of the Clauser-Horne-Shimony-Holt inequality for steering , 2015 .

[35]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  N. Gisin,et al.  Quantifying the nonlocality of Greenberger-Horne-Zeilinger quantum correlations by a bounded communication simulation protocol. , 2011, Physical review letters.

[37]  Reid,et al.  Demonstration of the Einstein-Podolsky-Rosen paradox using nondegenerate parametric amplification. , 1989, Physical review. A, General physics.

[38]  John C. Howell,et al.  Violation of continuous variable EPR steering with discrete measurements , 2013, CLEO 2013.

[39]  Valerio Scarani,et al.  An anomaly of non-locality , 2006, Quantum Inf. Comput..

[40]  Sabine Wollmann,et al.  Observation of One-way Einstein-Podolsky-Rosen steering , 2018 .

[41]  D. J. Saunders,et al.  Experimental EPR-steering using Bell-local states , 2009, 0909.0805.

[42]  Marek Żukowski,et al.  Geometric Bell-like inequalities for steering , 2015 .

[43]  H. M. Wiseman,et al.  Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox , 2009, 0907.1109.