Prediction Error and Repetition Suppression Have Distinct Effects on Neural Representations of Visual Information

Predictive coding theories argue recent experience establishes expectations in the brain that generate prediction errors when violated. Prediction errors provide a possible explanation for repetition suppression, in which evoked neural activity is attenuated across repeated presentations of the same stimulus. According to the predictive coding account, repetition suppression arises because repeated stimuli are expected, non-repeated stimuli are unexpected and thus elicit larger neural responses. Here we employed electroencephalography in humans to test the predictive coding account of repetition suppression by presenting sequences of gratings with orientations that were expected to repeat or change in separate blocks. We applied multivariate forward modelling to determine how orientation selectivity was affected by repetition and prediction. Unexpected stimuli were associated with significantly enhanced orientation selectivity, whereas there was no such influence on selectivity for repeated stimuli. Our results suggest that repetition suppression and expectation have separable effects on neural representations of visual feature information.

[1]  Elkan G. Akyürek,et al.  Dynamic hidden states underlying working memory guided behaviour , 2017, Nature Neuroscience.

[2]  Gustavo Rohenkohl,et al.  Testing sensory evidence against mnemonic templates , 2015, eLife.

[3]  Janneke F. M. Jehee,et al.  Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex , 2012, Neuron.

[4]  Michael J. Berry,et al.  Adaptation of retinal processing to image contrast and spatial scale , 1997, Nature.

[5]  Edward F. Ester,et al.  Substitution and pooling in visual crowding induced by similar and dissimilar distractors. , 2015, Journal of vision.

[6]  Edward Awh,et al.  Feature-Selective Attentional Modulations in Human Frontoparietal Cortex , 2016, The Journal of Neuroscience.

[7]  Mareike Grotheer,et al.  Repetition Probability Effects Depend on Prior Experiences , 2014, The Journal of Neuroscience.

[8]  S. Gilson,et al.  Cue combination for 3D location judgements. , 2011, Journal of vision.

[9]  Susan G. Wardle,et al.  Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data , 2016, Journal of Cognitive Neuroscience.

[10]  Stanislas Dehaene,et al.  Two Distinct Dynamic Modes Subtend the Detection of Unexpected Sounds , 2014, PloS one.

[11]  Jim M. Monti,et al.  Neural repetition suppression reflects fulfilled perceptual expectations , 2008, Nature Neuroscience.

[12]  R. Vogels,et al.  Repetition Probability Does Not Affect fMRI Repetition Suppression for Objects , 2013, The Journal of Neuroscience.

[13]  Carson C. Chow,et al.  Repetition priming and repetition suppression: A case for enhanced efficiency through neural synchronization , 2012, Cognitive neuroscience.

[14]  M. Tervaniemi,et al.  Representation of abstract attributes of auditory stimuli in the human brain. , 1992, Neuroreport.

[15]  Rufin Vogels,et al.  Statistical Learning Signals in Macaque Inferior Temporal Cortex , 2018, Cerebral cortex.

[16]  I. Nelken,et al.  Processing of low-probability sounds by cortical neurons , 2003, Nature Neuroscience.

[17]  J. Movshon,et al.  Adaptation changes the direction tuning of macaque MT neurons , 2004, Nature Neuroscience.

[18]  A. Dale,et al.  Functional-Anatomic Correlates of Object Priming in Humans Revealed by Rapid Presentation Event-Related fMRI , 1998, Neuron.

[19]  Timothy E. J. Behrens,et al.  Organizing conceptual knowledge in humans with a gridlike code , 2016, Science.

[20]  Leif D. Nelson,et al.  False-Positive Psychology , 2011, Psychological science.

[21]  A. Todorović,et al.  Repetition Suppression and Expectation Suppression Are Dissociable in Time in Early Auditory Evoked Fields , 2012, The Journal of Neuroscience.

[22]  Raymond J. Dolan,et al.  Outlier Responses Reflect Sensitivity to Statistical Structure in the Human Brain , 2013, PLoS Comput. Biol..

[23]  A. Fairhall,et al.  Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex , 2007, PLoS biology.

[24]  Fritjof Helmchen,et al.  Stimulus relevance modulates contrast adaptation in visual cortex , 2016, eLife.

[25]  Marisa Carrasco,et al.  Feature-based attention modulates orientation-selective responses in human visual cortex , 2010 .

[26]  Kyungmin Su,et al.  The PREP pipeline: standardized preprocessing for large-scale EEG analysis , 2015, Front. Neuroinform..

[27]  Dorothy V. M. Bishop,et al.  Journal of Neuroscience Methods , 2015 .

[28]  S. Dehaene,et al.  Neural signature of the conscious processing of auditory regularities , 2009, Proceedings of the National Academy of Sciences.

[29]  F. Tong,et al.  Decoding Seen and Attended Motion Directions from Activity in the Human Visual Cortex , 2006, Current Biology.

[30]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[31]  Robert Oostenveld,et al.  The five percent electrode system for high-resolution EEG and ERP measurements , 2001, Clinical Neurophysiology.

[32]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[33]  S. Dehaene,et al.  Time-Resolved Decoding of Two Processing Chains during Dual-Task Interference , 2015, Neuron.

[34]  Rufin Vogels,et al.  Encoding of Predictable and Unpredictable Stimuli by Inferior Temporal Cortical Neurons , 2017, Journal of Cognitive Neuroscience.

[35]  David W. Sutterer,et al.  The topography of alpha-band activity tracks the content of spatial working memory. , 2016, Journal of neurophysiology.

[36]  Helen C. Barron,et al.  Repetition suppression: a means to index neural representations using BOLD? , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[37]  P. Paavilainen The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. , 2013, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[38]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[39]  Christian F. Doeller,et al.  Evidence for grid cells in a human memory network , 2010, Nature.

[40]  G. A. Miller,et al.  Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. , 2014, Psychophysiology.

[41]  I. Winkler,et al.  Mismatch negativity , 1998, Clinical Neurophysiology.

[42]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[43]  J B Poline,et al.  Cerebral mechanisms of word masking and unconscious repetition priming , 2001, Nature Neuroscience.

[44]  J. R. King,et al.  Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness , 2013, NeuroImage.

[45]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[46]  Vanessa M. Johnen,et al.  Human Scalp Electroencephalography Reveals that Repetition Suppression Varies with Expectation , 2011, Front. Hum. Neurosci..

[47]  Colin W G Clifford,et al.  The tilt illusion: Phenomenology and functional implications , 2014, Vision Research.

[48]  John H. R. Maunsell,et al.  Feature-based attention in visual cortex , 2006, Trends in Neurosciences.

[49]  Jonas Larsson,et al.  fMRI repetition suppression: neuronal adaptation or stimulus expectation? , 2012, Cerebral cortex.

[50]  Karl J. Friston,et al.  Predictive coding, precision and synchrony , 2012, Cognitive neuroscience.

[51]  J. B. Demb,et al.  Divisive suppression explains high-precision firing and contrast adaptation in retinal ganglion cells , 2016, bioRxiv.

[52]  S. Dehaene,et al.  Distinct cortical codes and temporal dynamics for conscious and unconscious percepts , 2015, eLife.

[53]  Michael J. Wolff,et al.  Decoding Rich Spatial Information with High Temporal Resolution , 2015, Trends in Cognitive Sciences.

[54]  A. Dale,et al.  Functional analysis of primary visual cortex (V1) in humans. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Daniel C. Kiper,et al.  Relationship between neural response and adaptation selectivity to form and color: an ERP study , 2012, Front. Hum. Neurosci..

[56]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[57]  C. Clifford Perceptual adaptation: motion parallels orientation , 2002, Trends in Cognitive Sciences.

[58]  S. Funahashi,et al.  Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex , 2017, The Journal of Neuroscience.

[59]  R. Näätänen,et al.  The mismatch negativity (MMN) in basic research of central auditory processing: A review , 2007, Clinical Neurophysiology.

[60]  J. Serences,et al.  Near-Real-Time Feature-Selective Modulations in Human Cortex , 2013, Current Biology.

[61]  S. Dehaene,et al.  Characterizing the dynamics of mental representations: the temporal generalization method , 2014, Trends in Cognitive Sciences.

[62]  Stefan Treue,et al.  Feature-based attention influences motion processing gain in macaque visual cortex , 1999, Nature.

[63]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[64]  Gustavo Deco,et al.  Predictive Coding in the Visual Cortex by a Recurrent Network with Gabor Receptive Fields , 2001, Neural Processing Letters.

[65]  Karl J. Friston,et al.  The mismatch negativity: A review of underlying mechanisms , 2009, Clinical Neurophysiology.

[66]  C. Schreiner,et al.  Short-term adaptation of auditory receptive fields to dynamic stimuli. , 2004, Journal of neurophysiology.

[67]  Floris P de Lange,et al.  Prior expectations induce prestimulus sensory templates , 2017, Proceedings of the National Academy of Sciences.

[68]  Matthew F Tang,et al.  Separate banks of information channels encode size and aspect ratio. , 2017, Journal of vision.

[69]  D. Schacter,et al.  Priming and the Brain , 1998, Neuron.

[70]  Rufin Vogels,et al.  Stimulus repetition probability does not affect repetition suppression in macaque inferior temporal cortex. , 2011, Cerebral cortex.

[71]  R. Henson,et al.  Neural response suppression, haemodynamic repetition effects, and behavioural priming , 2003, Neuropsychologia.

[72]  John H. R. Maunsell,et al.  Neuronal Mechanisms of Visual Attention. , 2015, Annual review of vision science.

[73]  S. Dehaene,et al.  Brain Mechanisms Underlying the Brief Maintenance of Seen and Unseen Sensory Information , 2016, Neuron.

[74]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[75]  C. Jacques,et al.  Early adaptation to repeated unfamiliar faces across viewpoint changes in the right hemisphere: Evidence from the N170 ERP component , 2009, Neuropsychologia.

[76]  Karl J. Friston,et al.  A theory of cortical responses , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[77]  John T. Serences,et al.  Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices , 2013, Nature Neuroscience.

[78]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[79]  E. Maris,et al.  Prior Expectation Mediates Neural Adaptation to Repeated Sounds in the Auditory Cortex: An MEG Study , 2011, The Journal of Neuroscience.

[80]  J. S. Guntupalli,et al.  Decoding neural representational spaces using multivariate pattern analysis. , 2014, Annual review of neuroscience.

[81]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[82]  Colin W G Clifford,et al.  Adaptation Improves Neural Coding Efficiency Despite Increasing Correlations in Variability , 2013, The Journal of Neuroscience.

[83]  S. Dehaene,et al.  Evidence for a hierarchy of predictions and prediction errors in human cortex , 2011, Proceedings of the National Academy of Sciences.

[84]  M. Carandini,et al.  Adaptation maintains population homeostasis in primary visual cortex , 2013, Nature Neuroscience.

[85]  Dimitrios Pantazis,et al.  Can visual information encoded in cortical columns be decoded from magnetoencephalography data in humans? , 2015, NeuroImage.

[86]  Matthew F. Tang,et al.  The broad orientation dependence of the motion streak aftereffect reveals interactions between form and motion neurons. , 2015, Journal of vision.

[87]  Adrienne L. Fairhall,et al.  Efficiency and ambiguity in an adaptive neural code , 2001, Nature.

[88]  Rufin Vogels,et al.  Recent Visual Experience Shapes Visual Processing in Rats through Stimulus-Specific Adaptation and Response Enhancement , 2017, Current Biology.

[89]  Karl J. Friston,et al.  Repetition suppression and its contextual determinants in predictive coding , 2016, Cortex.

[90]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[91]  G L Gerstein,et al.  Single-unit activity in temporal association cortex of the monkey. , 1967, Journal of neurophysiology.

[92]  Andrew Schwartz,et al.  Dynamic range adaptation in primary motor cortical populations , 2017, eLife.

[93]  D. Heeger,et al.  Decoding and Reconstructing Color from Responses in Human Visual Cortex , 2009, The Journal of Neuroscience.

[94]  Jason Bell,et al.  Global shape aftereffects have a local substrate: A tilt aftereffect field. , 2010, Journal of vision.

[95]  N. Sigala,et al.  Dynamic Coding for Cognitive Control in Prefrontal Cortex , 2013, Neuron.

[96]  W. Schultz,et al.  Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency , 2016, Neuron.