Discrete Vector Potentials for Nonsimply Connected Three-Dimensional Domains

In this paper, we focus on the representation of a divergence-free vector field, defined, on a connected nonsimply connected domain $\Omega \subset \R^3$ with a connected boundary $\Gamma$, by its curl and its normal component on the boundary. The considered problem is discretized with H(curl)- and H(div)-conforming finite elements. In order to ensure the uniqueness of the vector potential, we propose a spanning tree methodology to identify the independent edges. The topological features of the domain under consideration are analyzed here by means of the homology groups of first and second order.

[1]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[2]  P. Giblin,et al.  Graphs, surfaces, and homology : an introduction to algebraic topology , 1977 .

[3]  R. Temam,et al.  Remarques sur les équations de Navier-Stokes stationnaires et les phénomènes successifs de bifurcation , 1978 .

[4]  A. Bossavit Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements , 1997 .

[5]  Abderrahmane Bendali,et al.  A variational approach for the vector potential formulation of the Stokes and Navier-Stokes problems in three dimensional domains , 1985 .

[6]  Christine Bernardi,et al.  Compatibilité de traces aux arêtes et coins d'un polyèdre , 2000 .

[7]  W. Chew,et al.  Lattice electromagnetic theory from a topological viewpoint , 1999 .

[8]  Paul W. Gross,et al.  Finite Element-Based Algorithms to Make Cuts for Magnetic Scalar Potentials: Topological Constraints and Computational Complexity , 2001 .

[9]  P. R. Kotiuga An algorithm to make cuts for magnetic scalar potentials in tetrahedral meshes based on the finite element method , 1989 .

[10]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[11]  Gene H. Golub,et al.  Matrix computations , 1983 .

[12]  François Dubois,et al.  Discrete vector potential representation of a divergence-free vector field in three dimensional domains: numerical analysis of a model problem , 1990 .

[13]  J. Stillwell Classical topology and combinatorial group theory , 1980 .

[14]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[15]  Y. Choquet-Bruhat Géométrie différentielle et systèmes extérieurs , 1968 .

[16]  C. Mattiussi An Analysis of Finite Volume, Finite Element, and Finite Difference Methods Using Some Concepts from Algebraic Topology , 1997 .

[17]  H. Whitney Geometric Integration Theory , 1957 .

[18]  F. Hecht,et al.  Construction d’une base de fonctions $P_1$ non conforme à divergence nulle dans $\mathbb {R}^3$ , 1981 .

[19]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[21]  Patrick Ciarlet,et al.  On traces for functional spaces related to Maxwell's equations Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications , 2001 .

[22]  P. Giblin Graphs, surfaces, and homology , 1977 .

[23]  T. Chan Rank revealing QR factorizations , 1987 .

[24]  Adel Razek,et al.  Boundary edge elements and spanning tree technique in three‐dimensional electromagnetic field computation , 1993 .

[25]  Christine Bernardi,et al.  Methodes d'elements finis mixtes pour les equations de stokes et de Navier-Stokes dans un polygone non convexe , 1981 .

[26]  V. Rich Personal communication , 1989, Nature.

[27]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .