A protective strategy against hyperinflammatory responses requiring the nontranscriptional actions of GPS2.

[1]  S. Rashid,et al.  Human Resistin Stimulates Hepatic Overproduction of Atherogenic ApoB-Containing Lipoprotein Particles by Enhancing ApoB Stability and Impairing Intracellular Insulin Signaling , 2011, Circulation research.

[2]  A. Lin,et al.  Selective Inactivation of c-Jun NH2-Terminal Kinase in Adipose Tissue Protects Against Diet-Induced Obesity and Improves Insulin Sensitivity in Both Liver and Skeletal Muscle in Mice , 2011, Diabetes.

[3]  T. Mikkelsen,et al.  Comparative Epigenomic Analysis of Murine and Human Adipogenesis , 2010, Cell.

[4]  G. Sabio,et al.  cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. , 2010, Trends in biochemical sciences.

[5]  H. Habelhah Emerging complexity of protein ubiquitination in the NF-κB pathway. , 2010, Genes & cancer.

[6]  T. Pawson,et al.  Post-translational modifications in signal integration , 2010, Nature Structural &Molecular Biology.

[7]  Hao Wu,et al.  Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. , 2010, Molecular cell.

[8]  T. Vanden Berghe,et al.  The Role of the Kinases RIP1 and RIP3 in TNF-Induced Necrosis , 2010, Science Signaling.

[9]  M. Karin,et al.  Immunity, Inflammation, and Cancer , 2010, Cell.

[10]  D. Vaux,et al.  RIPK1 is not essential for TNFR1-induced activation of NF-κB , 2010, Cell Death and Differentiation.

[11]  K. Blackwell,et al.  The RING domain of TRAF2 plays an essential role in the inhibition of TNFalpha-induced cell death but not in the activation of NF-kappaB. , 2010, Journal of molecular biology.

[12]  G. Tuteja,et al.  Cell-Specific Determinants of Peroxisome Proliferator-Activated Receptor γ Function in Adipocytes and Macrophages , 2010, Molecular and Cellular Biology.

[13]  D. Baker,et al.  Inflammation in neurodegenerative diseases , 2010, Immunology.

[14]  P. Meier,et al.  A tangled web of ubiquitin chains: breaking news in TNF-R1 signaling. , 2009, Molecular cell.

[15]  Erinna F. Lee,et al.  TRAF2 Must Bind to Cellular Inhibitors of Apoptosis for Tumor Necrosis Factor (TNF) to Efficiently Activate NF-κB and to Prevent TNF-induced Apoptosis , 2009, The Journal of Biological Chemistry.

[16]  K. Iwaisako,et al.  c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. , 2009, Gastroenterology.

[17]  Martin Kircher,et al.  Improved base calling for the Illumina Genome Analyzer using machine learning strategies , 2009, Genome Biology.

[18]  J. Gustafsson,et al.  GPS2 is required for cholesterol efflux by triggering histone demethylation, LXR recruitment, and coregulator assembly at the ABCG1 locus. , 2009, Molecular cell.

[19]  Zhijian J. Chen,et al.  Ubiquitylation in innate and adaptive immunity , 2009, Nature.

[20]  C. Glass,et al.  Cooperative NCoR/SMRT interactions establish a corepressor-based strategy for integration of inflammatory and anti-inflammatory signaling pathways. , 2009, Genes & development.

[21]  M. Lazar,et al.  Adipocyte-specific Expression of Murine Resistin Is Mediated by Synergism between Peroxisome Proliferator-activated Receptor γ and CCAAT/Enhancer-binding Proteins* , 2009, Journal of Biological Chemistry.

[22]  G. Shulman,et al.  AdPLA ablation increases lipolysis and prevents obesity induced by high fat feeding or leptin deficiency , 2009, Nature Medicine.

[23]  A. Mora,et al.  A Stress Signaling Pathway in Adipose Tissue Regulates Hepatic Insulin Resistance , 2008, Science.

[24]  J. Keats,et al.  Nonredundant and complementary functions of TRAF2 and TRAF3 in a ubiquitination cascade that activates NIK-dependent alternative NF-κB signaling , 2008, Nature Immunology.

[25]  T. Mak,et al.  Activation of noncanonical NF-κB requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2, TRAF3 and the kinase NIK , 2008, Nature Immunology.

[26]  J. Waring,et al.  Both cIAP1 and cIAP2 regulate TNFα-mediated NF-κB activation , 2008, Proceedings of the National Academy of Sciences.

[27]  R. Ahima,et al.  Loss of resistin ameliorates hyperlipidemia and hepatic steatosis in leptin-deficient mice. , 2008, American journal of physiology. Endocrinology and metabolism.

[28]  W. Fairbrother,et al.  c-IAP1 and c-IAP2 Are Critical Mediators of Tumor Necrosis Factor α (TNFα)-induced NF-κB Activation* , 2008, Journal of Biological Chemistry.

[29]  Shao-Cong Sun Deubiquitylation and regulation of the immune response , 2008, Nature Reviews Immunology.

[30]  M. Bertrand,et al.  cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. , 2008, Molecular cell.

[31]  G Jean Harry,et al.  G-protein Pathway Suppressor 2 (GPS2) Interacts with the Regulatory Factor X4 Variant 3 (RFX4_v3) and Functions as a Transcriptional Co-activator* , 2008, Journal of Biological Chemistry.

[32]  W. Cawthorn,et al.  TNF‐α and adipocyte biology , 2008 .

[33]  Michael B. Yaffe,et al.  RNF8 Transduces the DNA-Damage Signal via Histone Ubiquitylation and Checkpoint Protein Assembly , 2007, Cell.

[34]  Jiri Bartek,et al.  RNF8 Ubiquitylates Histones at DNA Double-Strand Breaks and Promotes Assembly of Repair Proteins , 2007, Cell.

[35]  J. Gustafsson,et al.  Involvement of corepressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis , 2007, Proceedings of the National Academy of Sciences.

[36]  John Calvin Reed,et al.  Ubiquitin-conjugating enzyme Ubc13 is a critical component of TNF receptor-associated factor (TRAF)-mediated inflammatory responses , 2007, Proceedings of the National Academy of Sciences.

[37]  G. Hotamisligil,et al.  Inflammation and metabolic disorders , 2006, Nature.

[38]  K. Ishii,et al.  Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling , 2006, Nature Immunology.

[39]  M. Griswold,et al.  Formation of hMSH4-hMSH5 heterocomplex is a prerequisite for subsequent GPS2 recruitment. , 2006, DNA repair.

[40]  M. Brady,et al.  The Nuclear Receptor Corepressors NCoR and SMRT Decrease Peroxisome Proliferator-activated Receptor γ Transcriptional Activity and Repress 3T3-L1 Adipogenesis* , 2005, Journal of Biological Chemistry.

[41]  R. Pratley,et al.  The evolving role of inflammation in obesity and the metabolic syndrome , 2005, Current diabetes reports.

[42]  C. Glass,et al.  A Corepressor/Coactivator Exchange Complex Required for Transcriptional Activation by Nuclear Receptors and Other Regulated Transcription Factors , 2004, Cell.

[43]  Z. Ronai,et al.  Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF‐κB , 2004, The EMBO journal.

[44]  K. Kaestner,et al.  Genetic Modulation of PPARγ Phosphorylation Regulates Insulin Sensitivity , 2003 .

[45]  Michael Karin,et al.  A central role for JNK in obesity and insulin resistance , 2002, Nature.

[46]  D. Goeddel,et al.  TNF-R1 Signaling: A Beautiful Pathway , 2002, Science.

[47]  N. Hacohen,et al.  Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: Nuclear factor-κB activation by TNF-α is obligatory , 2002 .

[48]  Brian T Chait,et al.  The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. , 2002, Molecular cell.

[49]  R. Paschke,et al.  Tumor Necrosis Factor α Is a Negative Regulator of Resistin Gene Expression and Secretion in 3T3-L1 Adipocytes , 2001 .

[50]  E. Androphy,et al.  AMF1 (GPS2) Modulates p53 Transactivation , 2001, Molecular and Cellular Biology.

[51]  M. Lazar,et al.  The hormone resistin links obesity to diabetes , 2001, Nature.

[52]  E. Androphy,et al.  AMF-1/Gps2 Binds p300 and Enhances Its Interaction with Papillomavirus E2 Proteins , 2000, Journal of Virology.

[53]  Haiyan Xu,et al.  Transmembrane Tumor Necrosis Factor (TNF)-α Inhibits Adipocyte Differentiation by Selectively Activating TNF Receptor 1* , 1999, The Journal of Biological Chemistry.

[54]  B. Spiegelman,et al.  Inhibition of Adipogenesis Through MAP Kinase-Mediated Phosphorylation of PPARγ , 1996, Science.

[55]  W. Xie,et al.  Two human cDNAs, including a homolog of Arabidopsis FUS6 (COP11), suppress G-protein- and mitogen-activated protein kinase-mediated signal transduction in yeast and mammalian cells , 1996, Molecular and cellular biology.

[56]  B. Spiegelman,et al.  Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. , 1996, Molecular endocrinology.

[57]  B. Spiegelman,et al.  A fat-specific enhancer is the primary determinant of gene expression for adipocyte P2 in vivo. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[58]  Zhijian J. Chen,et al.  Expanding role of ubiquitination in NF-κB signaling , 2011, Cell Research.

[59]  V. Dixit,et al.  Regulation of death receptor signaling by the ubiquitin system , 2010, Cell Death and Differentiation.

[60]  J. Silke,et al.  Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs , 2010, Cell Death and Differentiation.