Perception of Meta-Information Representation: A Psychophysical Approach

Previous research has identified many effective methods to visualize different types of meta-information, or information qualifiers; however, these methods are often incorporated without understanding how the graphical codes are perceived and how the encoded information is interpreted by display users. This results in display designers selecting graphical codes to represent meta-information without empirical evidence to determine the appropriateness of these selections. To help address this lack of guidance, this paper presents a systematic study of how people perceive two graphical codes (saturation and opacity) and relate those codes to different types of meta-information. Results were generated using psychophysical scaling methods, and provide visualization designers with a means to more appropriately design meta-information representations.

[1]  Richard T. Stone,et al.  Visual Representations of Meta-Information , 2009 .

[2]  M. Appelbaum,et al.  Psychometric methods. , 1989, Annual review of psychology.

[3]  Ann M. Bisantz,et al.  Utilizing Graphical Formats to Convey Uncertainty in a Decision Making Task , 2000 .

[4]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[5]  Saturation scales for red. , 1967, Vision research.

[6]  R. E. Christ Review and Analysis of Color Coding Research for Visual Displays , 1975 .

[7]  Alan M. MacEachren,et al.  VISUALIZING UNCERTAIN INFORMATION , 1992 .

[8]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[9]  D. Jameson,et al.  Some quantitative aspects of an opponent-colors theory. II. Brightness, saturation, and hue in normal and dichromatic vision. , 1955, Journal of the Optical Society of America.

[10]  Victoria Interrante,et al.  Harnessing natural textures for multivariate visualization , 2000, IEEE Computer Graphics and Applications.

[11]  Ann M. Bisantz,et al.  The Impact of Meta-Information on Decision-Making in Intelligence Operations , 2005 .

[12]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[13]  Nahum D. Gershon Visualization of an Imperfect World , 1998, IEEE Computer Graphics and Applications.

[14]  Victoria Interrante,et al.  Effectively visualizing multi-valued flow data using color and texture , 2003, IEEE Visualization, 2003. VIS 2003..

[15]  David V. Budescu,et al.  Decisions based on numerically and verbally expressed uncertainties. , 1988 .

[16]  Ann M. Bisantz,et al.  Displaying Uncertainty: Investigating the Effects of Display Format and Specificity , 2005, Hum. Factors.

[17]  B. Buttenfield,et al.  Guidelines for the Display of Attribute Certainty , 2000 .

[18]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[19]  Igor Drecki,et al.  Visualisation of Uncertainty in Geographical Data , 2002 .

[20]  Daniel Weiskopf,et al.  Texture-based visualization of uncertainty in flow fields , 2005, VIS 05. IEEE Visualization, 2005..

[21]  S. S. Stevens,et al.  Saturation of red: A prothetic continuum , 1966 .

[22]  R. Hunt Light and dark adaptation and the perception of color. , 1952, Journal of the Optical Society of America.

[23]  G. Wyszecki,et al.  Wavelength discrimination for point sources. , 1958, Journal of the Optical Society of America.

[24]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[25]  G. Lindzey A History of Psychology in Autobiography , 1980, Nature.

[26]  David V. Budescu,et al.  A review of human linguistic probability processing: General principles and empirical evidence , 1995, The Knowledge Engineering Review.

[27]  Alan M. MacEachren,et al.  Visualizing Georeferenced Data: Representing Reliability of Health Statistics , 1998 .

[28]  Chromatic Strengths of Colors, Part II. The Munsell System , 1968 .

[29]  Stefan Biffl,et al.  PlanningLines: novel glyphs for representing temporal uncertainties and their evaluation , 2005, Ninth International Conference on Information Visualisation (IV'05).

[30]  D. M. Purdy,et al.  Spectral Hue as a Function of Intensity , 1931 .

[31]  Ann M. Bisantz,et al.  Comparing Uncertainty Visualizations for a Dynamic Decision-Making Task , 2011 .

[32]  J. C. Stevens,et al.  Brightness inhibition re size of surround , 1967 .