Sparse Subspace Clustering via Group Sparse Coding

We propose in this paper a novel sparse subspace clustering method that regularizes sparse subspace representation by exploiting the structural sharing between tasks and data points via group sparse coding. We derive simple, provably convergent, and computationally efficient algorithms for solving the proposed group formulations. We demonstrate the advantage of the framework on three challenging benchmark datasets ranging from medical record data to image and text clustering and show that they consistently outperforms rival methods.

[1]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[2]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[3]  René Vidal,et al.  Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Volker Roth,et al.  A Complete Analysis of the l_1, p Group-Lasso , 2012, ICML.

[5]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[6]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Richard I. Hartley,et al.  Graph connectivity in sparse subspace clustering , 2011, CVPR 2011.

[8]  Jun Liu,et al.  Mining Sparse Representations: Formulations, Algorithms, and Applications , 2010 .

[9]  Y. Weiss,et al.  Multibody factorization with uncertainty and missing data using the EM algorithm , 2004, CVPR 2004.

[10]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[11]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[12]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[13]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[14]  Wei-Ying Ma,et al.  Locality preserving indexing for document representation , 2004, SIGIR '04.

[15]  Kun Huang,et al.  A multiscale hybrid linear model for lossy image representation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[16]  Allen Y. Yang,et al.  Unsupervised segmentation of natural images via lossy data compression , 2008, Comput. Vis. Image Underst..

[17]  Minh N. Do,et al.  A Theory for Sampling Signals from a Union of Subspaces , 2022 .

[18]  Svetha Venkatesh,et al.  A Bayesian Nonparametric Joint Factor Model for Learning Shared and Individual Subspaces from Multiple Data Sources , 2012, SDM.

[19]  René Vidal,et al.  Multiframe Motion Segmentation with Missing Data Using PowerFactorization and GPCA , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[20]  Yonina C. Eldar,et al.  Robust Recovery of Signals From a Structured Union of Subspaces , 2008, IEEE Transactions on Information Theory.

[21]  Takeo Kanade,et al.  A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.

[22]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[23]  Junzhou Huang,et al.  The Benefit of Group Sparsity , 2009 .

[24]  Allen Y. Yang,et al.  Robust Algebraic Segmentation of Mixed Rigid-Body and Planar Motions from Two Views , 2010, International Journal of Computer Vision.

[25]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[27]  H. Zou,et al.  Regression Shrinkage and Selection via the Elastic Net , with Applications to Microarrays , 2003 .

[28]  Kenichi Kanatani,et al.  Motion segmentation by subspace separation and model selection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[29]  Volkan Cevher,et al.  Model-Based Compressive Sensing , 2008, IEEE Transactions on Information Theory.

[30]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[31]  Svetha Venkatesh,et al.  Improved subspace clustering via exploitation of spatial constraints , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.