Tools and techniques for chloroplast transformation of Chlamydomonas.

The chloroplast organelle of plant and algal cells contains its own genetic system with a genome of a hundred or so genes. Stable transformation of the chloroplast was first achieved in 1988, using the newly developed biolistic method of DNA delivery to introduce cloned DNA into the genome of the green unicellular alga Chlamydomonas reinhardtii. Since that time there have been significant developments in chloroplast genetic engineering using this versatile organism, and it is probable that the next few years will see increasing interest in commercial applications whereby high-value therapeutic proteins and other recombinant products are synthesized in the Chlamydomonas chloroplast. In this chapter I review the basic methodology of chloroplast transformation, the current techniques and applications, and the future possibilities for using the Chlamydomonas chloroplast as a green organelle factory.

[1]  M. Sugiura,et al.  The chloroplast genome. , 1992, Plant molecular biology.

[2]  J. Rochaix,et al.  The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas , 1998, Advances in Photosynthesis and Respiration.

[3]  J. Raven,et al.  Photosynthesis in Algae , 2003, Advances in Photosynthesis and Respiration.

[4]  S. Purton,et al.  Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker , 2000, Molecular and General Genetics MGG.

[5]  D. Drapier,et al.  Searching limiting steps in the expression of chloroplast-encoded proteins: relations between gene copy number, transcription, transcript abundance and translation rate in the chloroplast of Chlamydomonas reinhardtii. , 2002, The Plant journal : for cell and molecular biology.

[6]  J. Rochaix Chlamydomonas reinhardtii as the photosynthetic yeast. , 1995, Annual review of genetics.

[7]  K. Richards,et al.  Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Mayfield,et al.  Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. , 2004, The Plant journal : for cell and molecular biology.

[9]  E. Fukusaki,et al.  Introduction of the archaebacterial geranylgeranyl pyrophosphate synthase gene into Chlamydomonas reinhardtii chloroplast. , 2003, Journal of bioscience and bioengineering.

[10]  M. Goldschmidt-Clermont Chloroplast Transformation and Reverse Genetics , 1998 .

[11]  J. Sanford The biolistic process , 1988 .

[12]  K. Apt,et al.  COMMERCIAL DEVELOPMENTS IN MICROALGAL BIOTECHNOLOGY , 1999 .

[13]  C. Fauquet,et al.  Microparticle bombardment as a tool in plant science and agricultural biotechnology. , 2002, DNA and cell biology.

[14]  Richard A Lerner,et al.  Expression and assembly of a fully active antibody in algae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Mayfield,et al.  Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes , 2005, Molecular Genetics and Genomics.

[16]  J. Rochaix,et al.  A Mutant Strain of Chlamydomonas reinhardtii Lacking the Chloroplast Photosystem II psbI Gene Grows Photoautotrophically (*) , 1995, The Journal of Biological Chemistry.

[17]  J. Erickson Chloroplast Transformation: Current Results and Future Prospects , 1996 .

[18]  T M Klein,et al.  Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. , 1988, Science.

[19]  H. Koop,et al.  Inducible trans-activation of plastid transgenes: expression of the R. eutropha phb operon in transplastomic tobacco. , 2005, Plant & cell physiology.

[20]  P. Maliga Plastid transformation in higher plants. , 2004, Annual review of plant biology.

[21]  M. Goldschmidt-Clermont,et al.  Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of chlamydomonas. , 1991, Nucleic acids research.

[22]  G. Schuster,et al.  Evidence for in vivo modulation of chloroplast RNA stability by 3′-UTR homopolymeric tails in Chlamydomonas reinhardtii , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  P. Joliot,et al.  Evidence for two active branches for electron transfer in photosystem I , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[24]  N. W. Gillham,et al.  Chloroplast transformation in Chlamydomonas. , 1993, Methods in enzymology.

[25]  S. P. Holloway,et al.  Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas , 1999, Molecular and General Genetics MGG.

[26]  J. Rochaix Functional Analysis of Plastid Genes through Chloroplast Reverse Genetics in Chlamydomonas , 2003 .

[27]  J. L. Franklin,et al.  Use of aminoglycoside adenyltransferase translational fusions to determine topology of thylakoid membrane proteins , 2003, FEBS letters.

[28]  L. Bogorad Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. , 2000, Trends in biotechnology.

[29]  R. Dixon,et al.  The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitutes for the chlL gene in Chlamydomonas reinhardtii. , 2005, Biochemical and biophysical research communications.

[30]  J. Rochaix,et al.  Selectable marker recycling in the chloroplast , 1996, Molecular and General Genetics MGG.

[31]  K. Yoshida,et al.  Expression of a foreign gene in Chlamydomonas reinhardtii chloroplast. , 1999, Journal of bioscience and bioengineering.

[32]  H. Koop,et al.  External control of transgene expression in tobacco plastids using the bacterial lac repressor. , 2005, The Plant journal : for cell and molecular biology.

[33]  D. Dauvillée,et al.  Minimal Extent of Sequence Homology Required for Homologous Recombination at the psbA Locus in Chlamydomonas reinhardtii Chloroplasts using PCR-generated DNA Fragments , 2004, Photosynthesis Research.

[34]  Donald R. Ort,et al.  Oxygenic Photosynthesis: The Light Reactions , 1996, Advances in Photosynthesis and Respiration.

[35]  Huiyun Chang,et al.  Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast , 2003, Biotechnology Letters.

[36]  S. Purton,et al.  ALGAL TRANSGENICS IN THE GENOMIC ERA 1 , 2005 .

[37]  C. Howe,et al.  DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. , 2003, Gene.

[38]  C. Meng,et al.  Recombination and heterologous expression of allophycocyanin gene in the chloroplast of Chlamydomonas reinhardtii. , 2005, Acta biochimica et biophysica Sinica.

[39]  S. Mayfield,et al.  Recent developments in the production of human therapeutic proteins in eukaryotic algae , 2005, Expert opinion on biological therapy.

[40]  S. Mayfield,et al.  Prospects for molecular farming in the green alga Chlamydomonas. , 2004, Current opinion in plant biology.

[41]  H. Cerutti,et al.  Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA , 1995, Molecular and cellular biology.

[42]  F. Zito,et al.  Cytochrome f Translation in Chlamydomonas Chloroplast Is Autoregulated by its Carboxyl-Terminal Domain Online version contains Web-only data. Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.011692. , 2003, The Plant Cell Online.

[43]  S. Mayfield,et al.  Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. , 2002, The Plant journal : for cell and molecular biology.

[44]  Richard T. Sayre,et al.  Engineering the Chloroplast Encoded Proteins of Chlamydomonas , 2004, Photosynthesis Research.

[45]  C. Hauser,et al.  Regulation of Chloroplast Translation , 1998 .