Reconstruction of Dynamic PET Data Using Spatio-Temporal Wavelet l1 Regularization
暂无分享,去创建一个
D. Van De Ville | I. Lemahieu | Y. D'Asseler | J. Verhaeghe | M. Unser | D. Van de Ville | I. Khalidov | I. Lemahieu | J. Verhaeghe | M. Unser | I. Khalidov | Y. D’Asseler
[1] Thierry Blu,et al. Cardinal exponential splines: part I - theory and filtering algorithms , 2005, IEEE Transactions on Signal Processing.
[2] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[3] Michael Unser. Cardinal exponential splines: part II - think analog, act digital , 2005, IEEE Transactions on Signal Processing.
[4] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[5] Thierry Blu,et al. Wavelet theory demystified , 2003, IEEE Trans. Signal Process..
[6] Robert D. Nowak,et al. An EM algorithm for wavelet-based image restoration , 2003, IEEE Trans. Image Process..
[7] Michael Unser,et al. From differential equations to the construction of new wavelet-like bases , 2006, IEEE Transactions on Signal Processing.
[8] S S Gambhir,et al. A fast nonlinear method for parametric imaging of myocardial perfusion by dynamic (13)N-ammonia PET. , 2001, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.
[9] Robert M. Lewitt,et al. Overview of methods for image reconstruction from projections in emission computed tomography , 2003, Proc. IEEE.
[10] D. Lalush,et al. A realistic spline-based dynamic heart phantom , 1998, 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No.98CH36255).