Epidemic Models in Populations of Varying Size

We consider simple compartmental models for infectious diseases with exposed and infective periods of fixed length. In particular, we examine the effect of incorporating nonlinear population dynamics into such models on threshold phenomena and the stability of endemic equilibria.

[1]  James A. Yorke,et al.  Some equations modelling growth processes and gonorrhea epidemics , 1973 .

[2]  H. Hethcote PERIODICITY AND STABILITY IN EPIDEMIC MODELS: A SURVEY , 1981 .

[3]  Roy M. Anderson,et al.  Population dynamics of fox rabies in Europe , 1981, Nature.

[4]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[5]  K. Dietz,et al.  The Incidence of Infectious Diseases under the Influence of Seasonal Fluctuations , 1976 .

[6]  Herbert W. Hethcote,et al.  Asymptotic Behavior and Stability in Epidemic Models , 1974 .

[7]  Z. Grossman,et al.  Oscillatory phenomena in a model of infectious diseases. , 1980, Theoretical population biology.

[8]  Petre Tautu,et al.  Mathematical Models in Medicine : Workshop, Mainz, March 1976 , 1976 .

[9]  E. B. Wilson,et al.  A Second Approximation to Soper's Epidemic Curve. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[10]  H. E. Soper The Interpretation of Periodicity in Disease Prevalence , 1929 .

[11]  R. May,et al.  Population Biology of Infectious Diseases , 1982, Dahlem Workshop Reports.

[12]  J. E. WilkinsJr. The differential difference equation for epidemics , 1945 .

[13]  E B Wilson,et al.  The Epidemic Curve. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Y. Iwasa,et al.  Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models , 1986, Journal of mathematical biology.

[15]  J. Yorke,et al.  Recurrent outbreaks of measles, chickenpox and mumps. I. Seasonal variation in contact rates. , 1973, American journal of epidemiology.

[16]  R. Ross,et al.  Prevention of malaria. , 2012, BMJ.

[17]  Herbert W. Hethcote,et al.  Stability analysis for models of diseases without immunity , 1981, Journal of mathematical biology.

[18]  S. Tjoa,et al.  PRACTOLOL IN THE CONTROL OF INTRAOCULAR TENSION , 1974 .

[19]  Mathematical Problems in Biology , 1974 .

[20]  K. Cooke,et al.  The effect of integral conditions in certain equations modelling epidemics and population growth , 1980, Journal of mathematical biology.

[21]  K. Cooke,et al.  Analysis of a model of a vertically transmitted disease , 1983, Journal of mathematical biology.

[22]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[23]  William Gurney,et al.  Instability and complex dynamic behaviour in population models with long time delays , 1982 .