Discontinuous Galerkin methods for the chemotaxis and haptotaxis models

In this work, first we formulate and compare three different discontinuous Interior Penalty Galerkin methods for the 2D Keller-Segel chemotaxis model. Keller-Segel chemotaxis model is the important starting step in the modeling of the real biological system. We show in the numerical tests that two of the proposed methods fail to give accurate, oscillation-free solutions. Next, we consider the application of the successful method for the Keller-Segel model to the simulation of the more realistic, and closely related haptotaxis model of tumor invasion into healthy tissues.

[1]  S. Carter,et al.  Haptotaxis and the Mechanism of Cell Motility , 1967, Nature.

[2]  S. Eykyn Microbiology , 1950, The Lancet.

[3]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[4]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[5]  Ethan J. Kubatko,et al.  hp Discontinuous Galerkin methods for advection dominated problems in shallow water flow , 2006 .

[6]  M. Cohen,et al.  Wave propagation in the early stages of aggregation of cellular slime molds. , 1971, Journal of theoretical biology.

[7]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[8]  J. Murray,et al.  A minimal mechanism for bacterial pattern formation , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  Alexander Kurganov,et al.  A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models , 2008, Numerische Mathematik.

[10]  John Tyler Bonner,et al.  The Cellular Slime Molds , 1967 .

[11]  S. Carter,et al.  Principles of Cell Motility: The Direction of Cell Movement and Cancer Invasion , 1965, Nature.

[12]  A. Anderson,et al.  A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion , 2005 .

[13]  B. Rivière ANALYTICAL AND NUMERICAL STUDY OF DIFFUSIVE FLUXES FOR TRANSPORT EQUATIONS WITH NEAR-DEGENERATE COEFFICIENTS , 2022 .

[14]  A. Marrocco,et al.  Numerical simulation of chemotactic bacteria aggregation via mixed finite elements , 2003 .

[15]  Chi-Wang Shu,et al.  High order time discretization methods with the strong stability property , 2001 .

[16]  H. Berg,et al.  Dynamics of formation of symmetrical patterns by chemotactic bacteria , 1995, Nature.

[17]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[18]  Alexander Kurganov,et al.  New Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model , 2008, SIAM J. Numer. Anal..

[19]  John Tyler Bonner,et al.  The Cellular Slime Molds. , 1967 .

[20]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[21]  A. Kurganov,et al.  On the Reduction of Numerical Dissipation in Central-Upwind Schemes , 2006 .

[22]  L. G. Stern,et al.  Fractional step methods applied to a chemotaxis model , 2000, Journal of mathematical biology.

[23]  Jerome Percus,et al.  Nonlinear aspects of chemotaxis , 1981 .

[24]  Chi-Wang Shu,et al.  A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes , 2006, J. Comput. Phys..

[25]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[26]  W. Beiglböck,et al.  Lecture Notes in Physics 1969–1985 , 1985 .

[27]  Alexander Kurganov,et al.  Central‐upwind schemes on triangular grids for hyperbolic systems of conservation laws , 2005 .

[28]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[29]  Dirk Horstmann,et al.  Keller-Segel model in chemotaxis and its consequences , 2003 .

[30]  Francis Filbet,et al.  A finite volume scheme for the Patlak–Keller–Segel chemotaxis model , 2006, Numerische Mathematik.

[31]  Mary F. Wheeler,et al.  Symmetric and Nonsymmetric Discontinuous Galerkin Methods for Reactive Transport in Porous Media , 2005, SIAM J. Numer. Anal..

[32]  Mary F. Wheeler,et al.  A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..

[33]  B. Rivière,et al.  On the solution of incompressible two-phase flow by a p-version discontinuous Galerkin method , 2005 .

[34]  Christoph Walker,et al.  Global Existence of Classical Solutions for a Haptotaxis Model , 2007, SIAM J. Math. Anal..

[35]  B. Rivière,et al.  Estimation of penalty parameters for symmetric interior penalty Galerkin methods , 2007 .

[36]  J. Douglas,et al.  Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods , 1976 .

[37]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[38]  J. Adler Chemotaxis in bacteria. , 1976, Journal of supramolecular structure.

[39]  H. Berg,et al.  Complex patterns formed by motile cells of Escherichia coli , 1991, Nature.