Learning based on kernel-PCA for abnormal event detection using filtering EWMA-ED.
暂无分享,去创建一个
Antônio José da Silva Neto | Diego C. Knupp | Alberto Prieto Moreno | Orestes Llanes Santiago | José M. Bernal de Lázaro | Orestes Llanes Santiago | A. Neto | D. Knupp | J. M. B. D. Lázaro
[1] Nan Li,et al. Ensemble Kernel Principal Component Analysis for Improved Nonlinear Process Monitoring , 2015 .
[2] Yingwei Zhang,et al. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM , 2009 .
[3] Jicong Fan,et al. Online monitoring of nonlinear multivariate industrial processes using filtering KICA–PCA , 2014 .
[4] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[5] Jicong Fan,et al. Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis , 2014, Inf. Sci..
[6] Nello Cristianini,et al. Kernel Methods for Pattern Analysis , 2004 .
[7] Orestes Llanes-Santiago,et al. Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial systems , 2015, Comput. Ind. Eng..
[8] Zhiqiang Ge,et al. Improved kernel PCA-based monitoring approach for nonlinear processes , 2009 .
[9] Ning Wang,et al. The optimization of the kind and parameters of kernel function in KPCA for process monitoring , 2012, Comput. Chem. Eng..
[10] E. F. Vogel,et al. A plant-wide industrial process control problem , 1993 .
[11] Richard D. Braatz,et al. Fault Detection and Diagnosis in Industrial Systems , 2001 .