Transport through a Kondo quantum dot: Functional RG approach

We apply the functional renormalization group (FRG) method to calculate the conductance of a quantum dot in the Kondo regime. Starting from the exact FRG equations in Keldysh formulation for the Kondo exchange Hamiltonian in pseudo‐fermion (pf) representation, we solve the coupled equations for the pf self energy and the coupling function, neglecting three‐particle and higher correlation functions. The conductance G as a function of temperature T and bias voltage V is calculated using a renormalized Golden Rule expression. The limiting behavior at T and/or V >> TK (TK: Kondo temperature) agrees with known results. The difficulties when approaching strong coupling are analyzed and improvements are suggested.

[1]  D. Schuricht,et al.  Dynamical spin-spin correlation functions in the Kondo model out of equilibrium , 2009, 0905.3095.

[2]  H. Schoeller,et al.  A perturbative nonequilibrium renormalization group method for dissipative quantum mechanics , 2009, 0902.1449.

[3]  S. Kehrein,et al.  Non-equilibrium scaling analysis of the Kondo model with voltage bias , 2008, 0811.0759.

[4]  T. Pruschke,et al.  A finite-frequency functional renormalization group approach to the single impurity Anderson model , 2008, 0806.0246.

[5]  J. Paaske,et al.  Electron transport in the four-lead two-impurity kondo model , 2007, 0712.0760.

[6]  T. Pruschke,et al.  Numerical renormalization group method for quantum impurity systems , 2007, cond-mat/0701105.

[7]  Manfred Salmhofer,et al.  Renormalization: An Introduction , 2007 .

[8]  P. Wölfle,et al.  Transconductance of a double quantum dot system in the Kondo regime. , 2006, Physical review letters.

[9]  T. Pruschke,et al.  Functional renormalization group for nonequilibrium quantum many-body problems , 2006, cond-mat/0609457.

[10]  M. Aagesen,et al.  Kondo physics in tunable semiconductor nanowire quantum dots , 2006, cond-mat/0608478.

[11]  C. Karrasch,et al.  Functional renormalization group approach to transport through correlated quantum dots , 2006 .

[12]  C. Marcus,et al.  Non-equilibrium singlet–triplet Kondo effect in carbon nanotubes , 2006, cond-mat/0602581.

[13]  S. Kehrein Scaling and decoherence in the nonequilibrium Kondo model. , 2004, Physical review letters.

[14]  Johann Kroha,et al.  Conserving Diagrammatic Approximations for Quantum Impurity Models : NCA and CTMA( Kondo Effect-40 Years after the Discovery) , 2004, cond-mat/0410273.

[15]  A. Rosch,et al.  The Kondo Effect in Non-Equilibrium Quantum Dots: Perturbative Renormalization Group , 2004, cond-mat/0408506.

[16]  Johann Kroha,et al.  Dynamical properties of the Anderson impurity model within a diagrammatic pseudoparticle approach , 2004, cond-mat/0404311.

[17]  A. Rosch,et al.  Nonequilibrium Transport through a Kondo Dot: Decoherence Effects. , 2004, cond-mat/0401180.

[18]  P. Wölfle,et al.  Nonequilibrium transport through a Kondo dot in a magnetic field: perturbation theory and poor man's scaling. , 2002, Physical review letters.

[19]  S. Tarucha,et al.  Electron transport through double quantum dots , 2002, cond-mat/0205350.

[20]  P. Wölfle,et al.  Kondo effect in quantum dots at high voltage: universality and scaling. , 2001, Physical review letters.

[21]  W. Hofstetter,et al.  Flow equation analysis of the anisotropic Kondo model , 2000, cond-mat/0008242.

[22]  D. Cobden,et al.  Kondo physics in carbon nanotubes , 2000, Nature.

[23]  Tarucha,et al.  The kondo effect in the unitary limit , 2000, Science.

[24]  L. Glazman,et al.  Suppression of the kondo effect in a quantum dot by external irradiation , 1999, cond-mat/9903436.

[25]  Kouwenhoven,et al.  A tunable kondo effect in quantum dots , 1998, Science.

[26]  M. Kastner,et al.  Kondo effect in a single-electron transistor , 1997, Nature.

[27]  C. Wetterich,et al.  Exact evolution equation for the effective potential , 1993, 1710.05815.

[28]  R. Bishop,et al.  Quantum many-particle systems , 1990 .

[29]  Henri Orland,et al.  Quantum Many-Particle Systems , 1988 .

[30]  H. Smith,et al.  Quantum field-theoretical methods in transport theory of metals , 1986 .

[31]  P. Anderson A poor man's derivation of scaling laws for the Kondo problem , 1970 .

[32]  A. Abrikosov Electron scattering on magnetic impurities in metals and anomalous resistivity effects , 1965 .