Post-Fire Canopy Height Recovery in Canada's Boreal Forests Using Airborne Laser Scanner (ALS)

Canopy height data collected with an airborne laser scanner (ALS) flown across unmanaged parts of Canada's boreal forest in the summer of 2010 were used—as stand-alone data—to derive a least-squares polynomial (LSPOL) between presumed post-fire recovered canopy heights and duration (in years) since fire (YSF). Flight lines of the >25,000-km ALS survey intersected 163 historic fires with a known day of detection and fire perimeter. A sequential statistical testing procedure was developed to separate post-fire recovered canopy heights from pre-fire canopy heights. Of the 153 fires with >5 YSF, 121 cases (89%) could be resolved to a complete or partial post-fire canopy replacement. The estimated LSPOL can be used to estimate post-fire aboveground biomass and carbon sequestration in areas where alternative information is dated or absent. These LIDAR derived findings are especially useful as existing growth information is largely developed for higher productivity ecosystems and not applicable to these ecosystems subject to large wildfires.

[1]  W. Kurz,et al.  National level forest monitoring and modeling in Canada , 2004 .

[2]  John F. Weishampel,et al.  Using Lidar-Derived Vegetation Profiles to Predict Time since Fire in an Oak Scrub Landscape in East-Central Florida , 2010, Remote. Sens..

[3]  B. A. Park,et al.  Assessing the differenced Normalized Burn Ratio ’ s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska ’ s national parks , 2008 .

[4]  D. Lesieur,et al.  Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry , 2001 .

[5]  Grant M. Domke,et al.  Consequences of alternative tree-level biomass estimation procedures on U.S. forest carbon stock estimates , 2012 .

[6]  John F. Weishampel,et al.  Portable and Airborne Small Footprint LiDAR: Forest Canopy Structure Estimation of Fire Managed Plots , 2011, Remote. Sens..

[7]  Yves Bergeron,et al.  Modeling Tree Mortality Following Wildfire in the Southeastern Canadian Mixed-Wood Boreal Forest , 2003, Forest Science.

[8]  K. Murphy,et al.  Evaluating the ability of the differenced Normalized Burn Ratio (dNBR) to predict ecologically significant burn severity in Alaskan boreal forests , 2008 .

[9]  F. M. Danson,et al.  Estimating biomass carbon stocks for a Mediterranean forest in central Spain using LiDAR height and intensity data , 2010 .

[10]  Kerry Anderson,et al.  A model to predict lightning-caused fire occurrences , 2002 .

[11]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[12]  M. Wulder,et al.  Forest inventory height update through the integration of lidar data with segmented Landsat imagery , 2003 .

[13]  Claude Villeneuve,et al.  Estimating the net carbon balance of boreal open woodland afforestation : A case-study in Québec's closed-crown boreal forest , 2009 .

[14]  Wildfire Regime in the Boreal Forest , 2002 .

[15]  D. Tinker,et al.  Allometric equation development, biomass, and aboveground productivity in ponderosa pine forests, Black Hills, Wyoming. , 2010 .

[16]  Andrew Thomas Hudak,et al.  LiDAR Utility for Natural Resource Managers , 2009, Remote. Sens..

[17]  K. Hirsch,et al.  Large forest fires in Canada, 1959–1997 , 2002 .

[18]  P. Axelsson DEM Generation from Laser Scanner Data Using Adaptive TIN Models , 2000 .

[19]  Arko Lucieer,et al.  Extracting LiDAR indices to characterise multilayered forest structure using mixture distribution functions , 2011 .

[20]  Ronald J. Hall,et al.  Large fires as agents of ecological diversity in the North American boreal forest , 2008 .

[21]  S. Magnussen,et al.  Model-based, volume-to-biomass conversion for forested and vegetated land in Canada , 2007 .

[22]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[23]  R. R. Hocking The analysis and selection of variables in linear regression , 1976 .

[24]  E. Chuvieco,et al.  Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models , 2007 .

[25]  Scott N. Miller,et al.  DEM Development from Ground-Based LiDAR Data: A Method to Remove Non-Surface Objects , 2010, Remote. Sens..

[26]  L. Bruzzone,et al.  Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data , 2012 .

[27]  J. Hartigan,et al.  The Dip Test of Unimodality , 1985 .

[28]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[29]  Kevin Lim,et al.  LiDAR Sampling Density for Forest Resource Inventories in Ontario, Canada , 2012, Remote. Sens..

[30]  A. Nappi,et al.  Effect of fire severity on long-term occupancy of burned boreal conifer forests by saproxylic insects and wood-foraging birds , 2010 .

[31]  E. Næsset Accuracy of forest inventory using airborne laser scanning: evaluating the first nordic full-scale operational project , 2004 .

[32]  S. Escuin,et al.  Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from LANDSAT TM/ETM images , 2008 .

[33]  Jan Verbesselt,et al.  Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index , 2011 .

[34]  J. Brandt The extent of the North American boreal zone , 2009 .

[35]  J. Beverly,et al.  Modeling Pinus strobus mortality following prescribed fire in Quetico Provincial Park, northwestern Ontario , 2003 .

[36]  R. McGaughey,et al.  Examining conifer canopy structural complexity across forest ages and elevations with LiDAR data , 2010 .

[37]  S L Beal,et al.  Sample size determination for confidence intervals on the population mean and on the difference between two population means. , 1989, Biometrics.

[38]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[39]  Norbert Pfeifer,et al.  Forest Delineation Based on Airborne LIDAR Data , 2012, Remote. Sens..

[40]  Alistair M. S. Smith,et al.  Discrete Return Lidar in Natural Resources: Recommendations for Project Planning, Data Processing, and Deliverables , 2009, Remote. Sens..

[41]  M. Nieuwenhuis,et al.  Retrieval of forest structural parameters using LiDAR remote sensing , 2010, European Journal of Forest Research.

[42]  B. Wotton,et al.  Summer Moisture and Wildfire Risks across Canada , 2009 .

[43]  Scott D. Peckham,et al.  Fire as the dominant driver of central Canadian boreal forest carbon balance , 2007, Nature.

[44]  Nicholas C. Coops,et al.  Evaluating error associated with lidar-derived DEM interpolation , 2009, Comput. Geosci..

[45]  J. Eitel,et al.  Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys , 2012 .

[46]  D. A. Hill,et al.  Combined high-density lidar and multispectral imagery for individual tree crown analysis , 2003 .

[47]  K. Itten,et al.  LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management , 2004 .

[48]  Hongyu Huang,et al.  A Comparison of Two Open Source LiDAR Surface Classification Algorithms , 2011, Remote. Sens..

[49]  W. Reed,et al.  Statistical methods for estimating historical fire frequency from multiple fire-scar data , 2004 .

[50]  Richard F. Gunst,et al.  Applied Regression Analysis , 1999, Technometrics.

[51]  Joanne C. White,et al.  Monitoring Canada’s forests. Part 1: Completion of the EOSD land cover project , 2008 .

[52]  Kaiguang Zhao,et al.  Ground Filtering Algorithms for Airborne LiDAR Data: A Review of Critical Issues , 2010, Remote. Sens..

[53]  Nicholas C. Coops,et al.  Lidar plots — a new large-area data collection option: context, concepts, and case study , 2012 .

[54]  P. Fulé,et al.  Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data , 2005 .

[55]  D. Leckie,et al.  Forest inventory in Canada with emphasis on map production , 1995 .

[56]  R. Koenker Quantile regression for longitudinal data , 2004 .

[57]  C. Nock,et al.  Forest fire occurrence and climate change in Canada , 2010 .

[58]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[59]  G. Nabuurs,et al.  European forest carbon balance assessed with inventory based methods - An introduction to a special section , 2010 .

[60]  M. Gillis,et al.  Monitoring Canada's forests: The National Forest Inventory , 2005 .