Development of redox flow batteries. A historical bibliography

[1]  K. Beccu Zur Deckung des zukünftigen Spitzenbedarfs elektrischer Energie mittels elektrochemischer Energiespeicher , 1974 .

[2]  M. Warshay,et al.  Cost and Size Estimates for a Redox Bulk Energy Storage Concept , 1977 .

[3]  L. H. Thaller,et al.  Redox flow cell energy storage systems , 1979 .

[4]  R. T. Galasco,et al.  Discharge Characteristics of a Soluble Iron‐Titanium Battery System , 1979 .

[5]  A. Bard,et al.  Solution Redox Couples for Electrochemical Energy Storage I . Iron (III)‐Iron (II) Complexes with O‐Phenanthroline and Related Ligands , 1981 .

[6]  L. W. Hruska,et al.  Investigation of Factors Affecting Performance of the Iron‐Redox Battery , 1981 .

[7]  R. T. Galasco,et al.  Enhancing Performance of the Ti(III)/Ti(IV) Couple for Redox Battery Applications , 1981 .

[8]  J. Newman,et al.  A comparison between flow-through and flow-by porous electrodes for redox energy storage , 1981 .

[9]  R. T. Galasco,et al.  Operating Performance of an Fe‐Ti Stationary Redox Battery in the Presence of Lead , 1982 .

[10]  Djong-Gie Oei,et al.  Chemically regenerative redox fuel cells , 1982 .

[11]  Djong-Gie Oei,et al.  A chemically regenerative redox fuel cell. II , 1982 .

[12]  C. Y. Yang,et al.  Catalytic electrodes for the Redox Flow Cell energy storage device , 1982 .

[13]  E. Kantner,et al.  Zinc-bromine battery design for electric vehicles , 1983, IEEE Transactions on Vehicular Technology.

[14]  Chi-Chao Wan,et al.  A study of the discharge performance of the Ti/Fe redox flow system , 1984 .

[15]  Peter S. Fedkiw,et al.  A mathematical model for the iron/chromium redox battery , 1984 .

[16]  R. Assink Fouling mechanism of separator membranes for the iron/chromium redox battery , 1984 .

[17]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[18]  Maria Skyllas-Kazacos,et al.  A study of the V(II)/V(III) redox couple for redox flow cell applications , 1985 .

[19]  M. Kiuchi Recent Trend of Squeeze Casting , 1985 .

[20]  M. A. Reid,et al.  Chemical and Electrochemical Behavior of the Cr(III)/Cr(II) Half‐Cell in the Iron‐Chromium Redox Energy Storage System , 1985 .

[21]  D. Cheng,et al.  Activation of hydrochloric acid-CrCl3 · 6H2 solutions with N-alkyfamines , 1985 .

[22]  Maria Skyllas-Kazacos,et al.  Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery , 1985 .

[23]  M. Uematsu,et al.  Treatment of non-Hodgkin lymphomas in the nasal cavities and paranasal sinuses. A failure analysis. , 1986, Acta radiologica. Oncology.

[24]  Anthony G. Fane,et al.  New All‐Vanadium Redox Flow Cell , 1986 .

[25]  C. E. Robinson,et al.  Flowing electrolyte batteries. Test methods and results , 1986 .

[26]  Stuart Licht,et al.  An Energetic Medium for Electrochemical Storage Utilizing the High Aqueous Solubility of Potassium Polysulfide , 1987 .

[27]  P. B. Mathur,et al.  Studies on the Fe2+/Fe3+ redox system using D.C. linear polarisation and impedance techniques , 1987 .

[28]  Maria Skyllas-Kazacos,et al.  Efficient Vanadium Redox Flow Cell , 1987 .

[29]  K. Ledjeff Elimination of hydrogen or oxygen from explosive mixtures by catalytic techniques , 1987 .

[30]  G. K. A. Sada,et al.  SOLAR PONDS FOR NORTHERN LATITUDES , 1988 .

[31]  K. Sawai,et al.  Cell performance of a diaphragm-type Fe/Cr redox flow cell. , 1988 .

[32]  S. Mizuta,et al.  Hybrid-type fuel cell using Fe-Cl redox system. , 1988 .

[33]  Maria Skyllas-Kazacos,et al.  Characteristics of a new all-vanadium redox flow battery , 1988 .

[34]  K. Sawai,et al.  On the electrolyte volume change during constant-current cycles of the diaphragm-type Fe/Cr redox flow cell. , 1988 .

[35]  S. Mizuta,et al.  Highly efficient electric power storage using Fe-Cl redox system. , 1988 .