Weak convergence and nonlinear ergodic theorems for reversible semigroups of nonexpansive mappings.

Soit S un semi-groupe semi-topologique. Soit C un sous-ensemble convexe ferme d'un espace de Banach uniformement convexe E avec une norme differentiable de Frechet et S={T a ;a∈S} une representation continue de S comme des applications non-dilatation de C dans C telles que l'ensemble point fixe commun F(S) de S dans C est non vide. On demontre que si S est reversible a droite, alors pour tout x∈C, l'ensemble convexe ferme W(x)=∩F(φ) est constitue d'au lus un point ou W(x)∩{K S (x);s∈S},K S (x) est l'enveloppe convexe fermee de {T t x;t≥S} et t≥S signifie t=s ou t∈Ss

[1]  Anthony To-Ming Lau,et al.  Invariant means on almost periodic functions and fixed point properties , 1973 .

[2]  Ronald E. Bruck Nonexpansive projections on subsets of Banach spaces. , 1973 .

[3]  S. Reich NONLINEAR EVOLUTION EQUATIONS AND NONLINEAR ERGODIC THEOREMS , 1977 .

[4]  A. Pazy,et al.  On the asymptotic behavior of iterates of nonexpansive mappings in Hilbert space , 1977 .

[5]  W. Takahashi,et al.  Asymptotic behavior of commutative semigroups of nonexpansive mappings in Banachspaces , 1986 .

[6]  J. Diestel Geometry of Banach Spaces: Selected Topics , 1975 .

[7]  W. Takahashi,et al.  Nonlinear Ergodic theorems for an amenable semigroup of nonexpansive mappings in a Banach space , 1984 .

[8]  Teck-Cheong Lim Characterizations of normal structure , 1974 .

[9]  N. Hirano A proof of the mean ergodic theorem for nonexpansive mappings in Banach space , 1980 .

[10]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[11]  W. Bartoszek Nonexpansive actions of topological semigroups on strictly convex Banach spaces and fixed points , 1988 .

[12]  Theodore Mitchell,et al.  Topological semigroups and fixed points , 1970 .

[13]  J. Baillon Un theoreme de type ergodique pour les contractions non lineaires dans un espace de Hilbert , 1975 .

[14]  W. Takahashi A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space , 1981 .

[15]  F. Deutsch,et al.  Applications of the Hahn-Banach Theorem in Approximation Theory , 1967 .

[16]  Wataru Takahashi,et al.  On Reich's strong convergence theorems for resolvents of accretive operators , 1984 .

[17]  C. W. Groetsch,et al.  A Note on Segmenting Mann Iterates , 1972 .

[18]  F. Browder Nonlinear operators and nonlinear equations of evolution in Banach spaces , 1976 .