Improving the selectivity to HDS in the HDT of synthetic FCC naphtha using sodium doped amorphous aluminosilicates as support of CoMo catalysts

[1]  E. Gaigneaux,et al.  Interpretation of the catalytic functionalities of CoMo/ASA FCC-naphtha-HDT catalysts based on its acid properties , 2011 .

[2]  E. Gaigneaux,et al.  Study of the selectivity in FCC naphtha hydrotreating by modifying the acid–base balance of CoMo/γ-Al2O3 catalysts , 2010 .

[3]  J. Vakros,et al.  CoMo/Al2O3-SiO2 catalysts prepared by co-equilibrium deposition filtration: Characterization and catalytic behavior for the hydrodesulphurization of thiophene , 2010 .

[4]  Jianyi Shen,et al.  Hydroisomerization of model FCC naphtha over sulfided Co(Ni)–Mo(W)/MCM-41 catalysts , 2009 .

[5]  M. Vrinat,et al.  New insight on competitive reactions during deep HDS of FCC gasoline , 2009 .

[6]  A. Olivas,et al.  Impact of preparation method and support modification on the activity of mesoporous hydrotreating CoMo catalysts , 2008 .

[7]  G. Busca Acid catalysts in industrial hydrocarbon chemistry. , 2007, Chemical reviews.

[8]  Jun Lu,et al.  Effect of synergism between potassium and phosphorus on selective hydrodesulfurization performance of Co–Mo/Al2O3 FCC gasoline hydro-upgrading catalyst , 2007 .

[9]  T. Matsui,et al.  Reactivity of olefins in the hydrodesulfurization of FCC gasoline over CoMo sulfide catalyst , 2007 .

[10]  Fabrice Diehl,et al.  On the hydrodesulfurization of FCC gasoline: a review , 2005 .

[11]  F. Maugé,et al.  HDS of a model FCC gasoline over a sulfided CoMo/Al2O3 catalyst: Effect of the addition of potassium , 2004 .

[12]  C. Geantet,et al.  Alkylation of 3-Methylthiophene with 2-Methyl-2-butene over a Zeolitic Catalyst , 2004 .

[13]  J. Jumas,et al.  Alumina-supported cobalt–molybdenum sulfide modified by tin via surface organometallic chemistry: application to the simultaneous hydrodesulfurization of thiophenic compounds and the hydrogenation of olefins , 2004 .

[14]  V. L. Parola,et al.  CoMo catalysts supported on aluminosilicates: synergy between support and sodium effects , 2004 .

[15]  D. Resasco,et al.  Loss of single-walled carbon nanotubes selectivity by disruption of the Co-Mo interaction in the catalyst , 2004 .

[16]  V. L. Parola,et al.  Effect of the Al/Si atomic ratio on surface and structural properties of sol–gel prepared aluminosilicates , 2003 .

[17]  C. Liu,et al.  Synthesis, characterization, and application of hydotalcites in hydrodesulfurization of FCC gasoline , 2003 .

[18]  J. Fierro,et al.  Hydrodesulfurization and hydrogenation of model compounds on silica–alumina supported bimetallic systems☆ , 2003 .

[19]  V. L. Parola,et al.  Structural characterisation of silica supported CoMo catalysts by UV Raman spectroscopy, XPS and X-ray diffraction techniques , 2002 .

[20]  C. Flego,et al.  Mixed oxides as a support for new CoMo catalysts , 2001 .

[21]  V. L. Parola,et al.  Influence of Sodium on the Structure and HDS Activity of Co–Mo Catalysts Supported ON Silica and Aluminosilicate , 2000 .

[22]  A. Krause,et al.  Reactivity of some C8-alkenes in etherification with methanol , 1999 .

[23]  T. Srinivasan,et al.  Raman Spectroscopy of Monolayer-Type Catalysts: Supported Molybdenum Oxides , 1998 .

[24]  B. Delmon,et al.  Modelling of hydrotreating catalysis based on the remote control: HYD and HDS , 1997 .

[25]  M. Yamada,et al.  Hydrodesulfurization of Catalytic Cracked Gasoline. 2. The Difference between HDS Active Site and Olefin Hydrogenation Active Site , 1997 .

[26]  J. L. Brito,et al.  Effect of Phase Composition of the Oxidic Precursor on the HDS Activity of the Sulfided Molybdates of Fe(II), Co(II), and Ni(II) , 1997 .

[27]  Paul Grange,et al.  Hydrotreating catalysts, an old story with new challenges , 1997 .

[28]  M. Yamada,et al.  Hydrodesulfurization of Catalytic Cracked Gasoline. 1. Inhibiting Effects of Olefins on HDS of Alkyl(benzo)thiophenes Contained in Catalytic Cracked Gasoline , 1997 .

[29]  E. I. Ko,et al.  Control of mixed oxide textural and acidic properties by the sol-gel method , 1997 .

[30]  J. S. Buchanan,et al.  Mechanistic considerations in acid-catalyzed cracking of olefins , 1996 .

[31]  Avelino Corma,et al.  Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions , 1995 .

[32]  H. Hattori Heterogeneous Basic Catalysis , 1995 .

[33]  H. Knoezinger,et al.  Reducibility and hydrodesulfurization activity of K-doped MoOx/Al2O3 and MoOx/SiO2 catalysts , 1994 .

[34]  O. A. Scelza,et al.  Characterization of γ-alumina doped with Li and K by infrared studies of CO adsorption and27Al-NMR , 1994 .

[35]  J. Ekerdt,et al.  A Raman and ultraviolet diffuse reflectance spectroscopic investigation of alumina-supported molybdenum oxide , 1991 .

[36]  B. Delmon,et al.  Modified Aluminas : Relationship between activity in 1-butanol dehydration and acidity measured by NH3 TPD , 1989 .

[37]  C. O'young Effects of alkali-metal promoters (potassium and cesium) on a molybdenum/.gamma.-alumina catalyst , 1989 .

[38]  F. Massoth,et al.  Catalytic functionalities of supported sulfides. I: Effect of support and additives on the CoMo catalyst , 1984 .

[39]  P. Grange,et al.  Raman-spectra of Cobalt Molybdenum Oxide Supported On Silica , 1980 .

[40]  B. Delmon,et al.  Surface characterization of silica-aluminas by photoelectron spectroscopy , 1978 .

[41]  P. Ratnasamy,et al.  Catalytic Aluminas: Surface Models and Characterization of Surface Sites , 1978 .

[42]  P. Rouxhet,et al.  Evolution of the acidic properties of silica—alumina gels as a function of chemical composition: infrared approach , 1977 .

[43]  P. Rouxhet,et al.  Infrared study of the adsorption of benzene and acetonitrile on silica—alumina gels: Acidity properties and surface heterogeneity , 1976 .