De novo assembly of the Platycladus orientalis (L.) Franco transcriptome provides insight into the development and pollination mechanism of female cone based on RNA-Seq data

[1]  Jie Yang,et al.  Comparative Transcriptome Analysis of Male and Female Conelets and Development of Microsatellite Markers in Pinus bungeana, an Endemic Conifer in China , 2017, Genes.

[2]  F. Liu,et al.  Transcriptomic analysis of flower development in tea (Camellia sinensis (L.)). , 2017, Gene.

[3]  A. Fernie,et al.  Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. , 2017, Journal of experimental botany.

[4]  S. Luang,et al.  Structural Basis of the Permeation Function of Plant Aquaporins , 2017 .

[5]  Fen Yang,et al.  Characterization and functional analysis of a MADS-box transcription factor gene (GbMADS9) from Ginkgo biloba , 2016 .

[6]  Li-an Xu,et al.  Analysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/C-ending , 2016, Scientific Reports.

[7]  S. Zhang,et al.  Root transcriptome sequencing and differentially expressed drought-responsive genes in the Platycladus orientalis (L.) , 2016, Tree Genetics & Genomes.

[8]  Wei Zhao,et al.  Global transcriptome analysis of Sabina chinensis (Cupressaceae), a valuable reforestation conifer , 2016, Molecular Breeding.

[9]  Zhaogeng Lu,et al.  Global comparative analysis of expressed genes in ovules and leaves of Ginkgo biloba L. , 2016, Tree Genetics & Genomes.

[10]  J. Vigouroux,et al.  Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. , 2016, Plant science : an international journal of experimental plant biology.

[11]  Jiyan Shi,et al.  Mechanistic study of programmed cell death of root border cells of cucumber (Cucumber sativus L.) induced by copper. , 2015, Plant physiology and biochemistry : PPB.

[12]  K. Jonavičienė,et al.  Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions , 2015, BMC Plant Biology.

[13]  I. Grosse,et al.  Patterns of gene expression during Arabidopsis flower development from the time of initiation to maturation , 2015, BMC Genomics.

[14]  W. Frommer,et al.  SWEETs, transporters for intracellular and intercellular sugar translocation. , 2015, Current opinion in plant biology.

[15]  Q. Qian,et al.  Transcriptome profiling of the spl5 mutant reveals that SPL5 has a negative role in the biosynthesis of serotonin for rice disease resistance , 2015, Rice.

[16]  B. Mueller‐Roeber,et al.  ROS-mediated abiotic stress-induced programmed cell death in plants , 2015, Front. Plant Sci..

[17]  R. Terauchi,et al.  The Draft Genome of Hop (Humulus lupulus), an Essence for Brewing. , 2015, Plant & cell physiology.

[18]  Synan F. AbuQamar,et al.  Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. , 2014, The New phytologist.

[19]  W. Frommer,et al.  Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9 , 2014, Nature.

[20]  V. M. Dörken,et al.  Orientation and withdrawal of pollination drops in Cupressaceae s. l. (Coniferales) , 2014 .

[21]  N. Prior Proteins in gymnosperm pollination drops. , 2014 .

[22]  F. Delalande,et al.  Proteomics profiling reveals novel proteins and functions of the plant stigma exudate , 2013, Journal of experimental botany.

[23]  Qixiang Zhang,et al.  Use of transcriptome sequencing to understand the pistillate flowering in hickory (Carya cathayensis Sarg.) , 2013, BMC Genomics.

[24]  Shiping Wang,et al.  Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. , 2013, Molecular plant.

[25]  Hsien-Da Huang,et al.  A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing , 2013, BMC Genomics.

[26]  D. Xing,et al.  Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. , 2013, Plant, cell & environment.

[27]  Xiaolan Zhao,et al.  Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development , 2013, BMC Genomics.

[28]  Haiying Liang,et al.  An EST dataset for Metasequoia glyptostroboides buds: the first EST resource for molecular genomics studies in Metasequoia , 2013, Planta.

[29]  J. Long,et al.  APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19 , 2012, Development.

[30]  N. Anten,et al.  Detect thy neighbor: identity recognition at the root level in plants. , 2012, Plant science : an international journal of experimental plant biology.

[31]  P. Aderkas,et al.  Pollination drops as dynamic apoplastic secretions , 2012 .

[32]  S. Mathews,et al.  The evolution of reproductive structures in seed plants: a re-examination based on insights from developmental genetics. , 2012, The New phytologist.

[33]  Li Wang,et al.  The mechanism of pollination drop withdrawal in Ginkgo biloba L. , 2012, BMC Plant Biology.

[34]  Jianfeng Liu,et al.  Selection of Reference Genes for Quantitative Gene Expression Studies in Platycladus orientalis (Cupressaceae) Using Real-Time PCR , 2012, PloS one.

[35]  Qinlong Zhu,et al.  Generation and Analysis of Expressed Sequence Tags from Chimonanthus praecox (Wintersweet) Flowers for Discovering Stress-Responsive and Floral Development-Related Genes , 2012, Comparative and functional genomics.

[36]  D. Klessig,et al.  Abscisic Acid Deficiency Antagonizes High-Temperature Inhibition of Disease Resistance through Enhancing Nuclear Accumulation of Resistance Proteins SNC1 and RPS4 in Arabidopsis[C][W] , 2012, Plant Cell.

[37]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[38]  M. Nasrallah,et al.  Complex networks of self-incompatibility signaling in the Brassicaceae. , 2010, Current opinion in plant biology.

[39]  A. Mliki,et al.  Abscisic acid signals reorientation of polyamine metabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. , 2010, Journal of plant physiology.

[40]  Fabio Fornara,et al.  SnapShot: Control of Flowering in Arabidopsis , 2010, Cell.

[41]  R. Dixon,et al.  The 'ins' and 'outs' of flavonoid transport. , 2010, Trends in plant science.

[42]  C. Kieslich,et al.  A Gain-of-Function Mutation of Arabidopsis Lipid Transfer Protein 5 Disturbs Pollen Tube Tip Growth and Fertilization[C][W] , 2009, The Plant Cell Online.

[43]  Yolanda T. Chong,et al.  Cellular Pathways Regulating Responses to Compatible and Self-Incompatible Pollen in Brassica and Arabidopsis Stigmas Intersect at Exo70A1, a Putative Component of the Exocyst Complex[W] , 2009, The Plant Cell Online.

[44]  T. Boller,et al.  Innate Immunity in Plants: An Arms Race Between Pattern Recognition Receptors in Plants and Effectors in Microbial Pathogens , 2009, Science.

[45]  I. Yoo,et al.  Free radical scavenging and antielastase activities of flavonoids from the fruits of Thuja orientalis , 2009, Archives of pharmacal research.

[46]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[47]  P. Moschou,et al.  Spermidine Exodus and Oxidation in the Apoplast Induced by Abiotic Stress Is Responsible for H2O2 Signatures That Direct Tolerance Responses in Tobacco[W] , 2008, The Plant Cell Online.

[48]  E. Lam,et al.  BAX Inhibitor-1 Modulates Endoplasmic Reticulum Stress-mediated Programmed Cell Death in Arabidopsis* , 2008, Journal of Biological Chemistry.

[49]  R. Sniezko,et al.  Proteomic evaluation of gymnosperm pollination drop proteins indicates highly conserved and complex biological functions , 2007, Sexual Plant Reproduction.

[50]  N. Chua,et al.  The GIGANTEA-Regulated MicroRNA172 Mediates Photoperiodic Flowering Independent of CONSTANS in Arabidopsis[W][OA] , 2007, The Plant Cell Online.

[51]  K. Roberts,et al.  The biology of arabinogalactan proteins. , 2007, Annual review of plant biology.

[52]  R. Kaldenhoff,et al.  Functional aquaporin diversity in plants. , 2006, Biochimica et biophysica acta.

[53]  S. O’Leary,et al.  Identification of Proteins Present in the Douglas Fir Ovular Secretion: An Insight into Conifer Pollen Selection and Development , 2005, International Journal of Plant Sciences.

[54]  A. Cabral,et al.  Arabidopsis SENESCENCE-ASSOCIATED GENE101 Stabilizes and Signals within an ENHANCED DISEASE SUSCEPTIBILITY1 Complex in Plant Innate Immunityw⃞ , 2005, The Plant Cell Online.

[55]  Detlef Weigel,et al.  Comprehensive Interaction Map of the Arabidopsis MADS Box Transcription Factorsw⃞ , 2005, The Plant Cell Online.

[56]  S. Tabata,et al.  A Vacuolar Processing Enzyme, δVPE, Is Involved in Seed Coat Formation at the Early Stage of Seed Development , 2005, The Plant Cell Online.

[57]  W. Frommer,et al.  Molecular and Functional Characterization of a Family of Amino Acid Transporters from Arabidopsis1 , 2004, Plant Physiology.

[58]  M. Nishimura,et al.  A Plant Vacuolar Protease, VPE, Mediates Virus-Induced Hypersensitive Cell Death , 2004, Science.

[59]  M. W. Yaish,et al.  Antifreeze proteins in overwintering plants: a tale of two activities. , 2004, Trends in plant science.

[60]  A. Carafa,et al.  Anatomical observations on the nucellar apex of Wellwitschia mirabilis and the chemical composition of the micropylar drop , 1992, Sexual Plant Reproduction.

[61]  D. Weigel,et al.  The F-box-containing protein UFO and AGAMOUS participate in antagonistic pathways governing early petal development in Arabidopsis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[62]  P. Aderkas,et al.  Ovular secretions as part of pollination mechanisms in conifers , 2002 .

[63]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[64]  P. Tighe,et al.  The Arabidopsis MALE STERILITY1 (MS1) gene is a transcriptional regulator of male gametogenesis, with homology to the PHD-finger family of transcription factors. , 2001, The Plant journal : for cell and molecular biology.

[65]  J. Dangl,et al.  The Disease Resistance Signaling Components EDS1 and PAD4 Are Essential Regulators of the Cell Death Pathway Controlled by LSD1 in Arabidopsis , 2001, The Plant Cell Online.

[66]  M. Lenhard,et al.  Termination of Stem Cell Maintenance in Arabidopsis Floral Meristems by Interactions between WUSCHEL and AGAMOUS , 2001, Cell.

[67]  M. Rise The role of prezygotic events in the reproductive success of conifers , 2001 .

[68]  D. Kovar,et al.  Maize Profilin Isoforms Are Functionally Distinct , 2000, Plant Cell.

[69]  R. Dixon,et al.  Flavonoids and isoflavonoids - a gold mine for metabolic engineering. , 1999, Trends in plant science.

[70]  Z. Quan,et al.  The Mechanism of Pollination in Platycladus orientalis and Thuja occidentalis (Cupressaceae) , 1999 .

[71]  P. Tomlinson,et al.  Contrasted pollen capture mechanisms in Phyllocladaceae and certain Podocarpaceae (Coniferales). , 1997, American journal of botany.

[72]  T. Takaso,et al.  Ovulate cone, pollination drop, and pollen capture in Sequoiadendron (Taxodiaceae) , 1996 .

[73]  L. Chesnoy Les sécrétions dans la pollinisation des Gymnospermes , 1993 .

[74]  A. Fahn Secretory tissues in vascular plants. , 1988, The New phytologist.

[75]  Ratiba Seridi-Benkaddour Etude ultrastructurale et biochimique de la secretion de la goutte micropylaire par le nucelle au moment de la pollinisation chez quatre gymnospermes : thuya orientalis, cupressacees, cephalotaxus drupacea, cephalotaxacees, taxus baccata, taxacees , 1988 .

[76]  J. Owens,et al.  The pollination mechanism of Engelmann spruce (Picea engelmannii) , 1987 .

[77]  R. Seridi,et al.  Ultrastructure et cytochimie des cellules superficielles du nucelle de Thuya orientalis L. (=Biota orientalis (L.) Endl.) au moment de l'émission de la goutte micropylaire , 1986 .

[78]  J. Owens,et al.  The pollination mechanism in yellow cypress (Chamaecyparisnootkatensis) , 1980 .

[79]  P. Nygaard Utilization of Exogenous Carbohydrates for Tube Growth and Starch Synthesis in Pine Pollen Suspension Cultures , 1977 .

[80]  J. Long,et al.  APETALA 2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA 19 , 2022 .