High Performance Embedded Dynamic Random Access Memory in Nano-Scale Technologies

Described are the high performance embedded DRAMs in nano-scale technology. The chapter starts with a discussion of the evolution of high-performance embedded DRAMs for the previous 15 years. It will then look into the principles of the embedded DRAMs, which include technology, macro and array architectures, mode of operations, wordline and bitline architectures, and sensing schemes. The discussion will also address ideas unique to the high-performance embedded DRAM such as Direct Write, Negative Wordline, Concurrent Refresh, Dataline Redundancy, BIST and Self-Repair methodology. After covering these key technical attributes, the chapter will detail the IBM embedded DRAM macros starting from ASIC to the most recent SOI embedded DRAM and the cache prototype designs for microprocessors. To conclude the chapter research, and development for future embedded DRAM with floating body cell, gain cell, and 3-dimensional embedded DRAM approach will be explored.

[1]  Martin Gall,et al.  A 220-mm/sup 2/, four- and eight-bank, 256-Mb SDRAM with single-sided stitched WL architecture , 1998 .

[2]  Balaram Sinharoy,et al.  The implementation of POWER7TM: A highly parallel and scalable multi-core high-end server processor , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[3]  R. Hamazaki,et al.  A 32-bank 256-Mb DRAM with cache and TAG , 1994 .

[4]  K. Arimoto,et al.  A hierarchical bit-line architecture with flexible redundancy and block compare test for 256 Mb DRAM , 1993, Symposium 1993 on VLSI Circuits.

[5]  Pierre Fazan,et al.  Zero capacitor embedded memory technology for system on chip , 2005, 2005 IEEE International Workshop on Memory Technology, Design, and Testing (MTDT'05).

[6]  Yibin Ye,et al.  2 GHz 2 Mb 2T Gain Cell Memory Macro With 128 GBytes/sec Bandwidth in a 65 nm Logic Process Technology , 2009, IEEE Journal of Solid-State Circuits.

[7]  T. Kirihata Embedded dynamic random access memory , 2003, 2003 International Symposium on VLSI Technology, Systems and Applications. Proceedings of Technical Papers. (IEEE Cat. No.03TH8672).

[8]  S. Okhonin,et al.  A capacitor-less 1T-DRAM cell , 2002, IEEE Electron Device Letters.

[9]  M. Wordeman,et al.  An 800-MHz embedded DRAM with a concurrent refresh mode , 2005, IEEE Journal of Solid-State Circuits.

[10]  T. Ohsawa,et al.  Memory design using one-transistor gain cell on SOI , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[11]  R.H. Dennard,et al.  A novel dynamic memory cell with internal voltage gain , 2005, IEEE Journal of Solid-State Circuits.

[12]  K. Yelick,et al.  Intelligent RAM (IRAM): chips that remember and compute , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[13]  K. Arimoto,et al.  Design methodology of embedded DRAM with virtual-socket architecture , 2001 .

[14]  Mike Lee,et al.  Design and Implementation of the POWER5 TM Microprocessor , 2004 .

[15]  Balaram Sinharoy,et al.  Design and implementation of the POWER5 microprocessor , 2004, Proceedings. 41st Design Automation Conference, 2004..

[16]  G. Daniel,et al.  A 390 mm/sup 2/ 16-bank 1 Gb DDR SDRAM with hybrid bitline architecture , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[17]  H. Fujisawa,et al.  An 8.1-ns Column-Access 1.6-Gb/s/pin DDR3 SDRAM With an 8:4 Multiplexed Data-Transfer Scheme , 2007, IEEE Journal of Solid-State Circuits.

[18]  N. Kushiyama,et al.  A 1.6 GB/s DRAM with flexible mapping redundancy technique and additional refresh scheme , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[19]  Kiyoo Itoh The History of DRAM Circuit Designs – At the Forefront of DRAM Development – , 2008, IEEE Solid-State Circuits Newsletter.

[20]  Brian Reed,et al.  A Commercial Field-Programmable Dense eFUSE Array Memory with 99.999% Sense Yield for 45nm SOI CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[21]  J. Barth,et al.  A 300 MHz multi-banked eDRAM macro featuring GND sense, bit-line twisting and direct reference cell write , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[22]  T. Kirihata,et al.  A 2.9ns random access cycle embedded DRAM with a destructive-read , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[23]  T. Kirihata,et al.  A 0.168/spl mu/m/sup 2//0.11/spl mu/m/sup 2/ highly scalable high performance embedded DRAM cell for 90/65-nm logic applications , 2005, IEEE VLSI-TSA International Symposium on VLSI Technology, 2005. (VLSI-TSA-Tech)..

[24]  Timothy Johnson,et al.  An 8-core, 64-thread, 64-bit power efficient sparc soc (niagara2) , 2007, ISPD '07.

[25]  M. Wada,et al.  A configurable DRAM macro design for 2112 derivative organizations to be synthesized using a memory generator , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[26]  Alexander V. Rylyakov,et al.  A Wide Power-Supply Range (0.5V-to-1.3V) Wide Tuning Range (500 MHz-to-8 GHz) All-Static CMOS AD PLL in 65nm SOI , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[27]  S. Miura,et al.  Access optimizer to overcome the "future walls of embedded DRAMs" in the era of systems on silicon , 1999, 1999 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC. First Edition (Cat. No.99CH36278).

[28]  N. Kuroda,et al.  An 8 ns random cycle embedded RAM macro with dual-port interleaved DRAM architecture (D/sup 2/ RAM) , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[29]  Mark Jacunski,et al.  A 1.0GHz multi-banked embedded DRAM in 65nm CMOS featuring concurrent refresh and hierarchical BIST , 2007, 2007 IEEE Custom Integrated Circuits Conference.

[30]  Ashok Kumar,et al.  An 8-Core 64-Thread 64b Power-Efficient SPARC SoC , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[31]  T. Kirihata,et al.  Process-design considerations for three dimensional memory integration , 2006, 2009 Symposium on VLSI Technology.

[32]  John E. Barth,et al.  Embedded DRAM: Technology platform for the Blue Gene/L chip , 2005, IBM J. Res. Dev..

[33]  T. Kirihata,et al.  A 7F/sup 2/ cell and bitline architecture featuring tilted array devices and penalty-free vertical BL twists for 4-Gb DRAMs , 2000, IEEE Journal of Solid-State Circuits.

[34]  Jean-Michel Sallese,et al.  A simple 1-transistor capacitor-less memory cell for high performance embedded DRAMs , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[35]  中島 謙,et al.  A 4-level Storage 4Gb DRAM , 1997 .

[36]  Erik Nelson,et al.  A 45nm SOI embedded DRAM macro for POWER7TM 32MB on-chip L3 cache , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[37]  Howard Leo Kalter,et al.  Processor-based built-in self-test for embedded DRAM , 1998, IEEE J. Solid State Circuits.

[38]  J.B. Kuang,et al.  An on-chip dual supply charge pump system for 45nm PD SOI eDRAM , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[39]  T. Matano,et al.  A 4-level storage 4 Gb DRAM , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.