Microfluidics assisted platforms for biotechnological applications

The aim of this PhD work is to exploit microfluidics features to improve the performances of some lab-on-a-chip designed for biotechnological applications: microfabrication techniques developed in the frame of telecommunication systems have by far found many other fields of applications, in particular optical sensing of chemical substances. The experience developed in design, fabricate, and test optical components or MEMS systems, can be successfully applied to the realization of lab-on-a-chip for specific scopes: two kind of microfluidics circuits for biotechnology have been considered, one integrated with the microarray technology, and the other devoted to cell manipulation.

[1]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[2]  Vesa-Pekka Lehto,et al.  Fabrication and chemical surface modification of mesoporous silicon for biomedical applications , 2008 .

[3]  Irina V. Grigorieva,et al.  Submicron sensors of local electric field with single-electron resolution at room temperature , 2006 .

[4]  Ivo Rendina,et al.  Numerical Optimization of a Microfluidic Assisted Microarray for the Detection of Biochemical Interactions , 2011, Sensors.

[5]  D. Beebe,et al.  Physics and applications of microfluidics in biology. , 2002, Annual review of biomedical engineering.

[6]  Francesco Bonaccorso,et al.  Brownian motion of graphene. , 2010, ACS nano.

[7]  D. Beebe,et al.  Three-dimensional micro-channel fabrication in polydimethylsiloxane (PDMS) elastomer , 2000, Journal of Microelectromechanical Systems.

[8]  Andreas Manz,et al.  Chip-based microsystems for genomic and proteomic analysis , 2000 .

[9]  Eckhard Quandt,et al.  Discrimination of single mutations in cancer-related gene fragments with a surface acoustic wave sensor. , 2006, Analytical chemistry.

[10]  David J. Odde,et al.  Micro-Patterning of Animal Cells on PDMS Substrates in the Presence of Serum without Use of Adhesion Inhibitors , 2004, Biomedical microdevices.

[11]  Paul Bartlett,et al.  Direct measurement of the effective charge in nonpolar suspensions by optical tracking of single particles. , 2007, The Journal of chemical physics.

[12]  Sankaran Sundaresan,et al.  Modeling the hydrodynamics of multiphase flow reactors: Current status and challenges , 2000 .

[13]  Luke P. Lee,et al.  A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in a high throughput mammalian cell culture array. , 2005, Lab on a chip.

[14]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[15]  S. Terry,et al.  A gas chromatographic air analyzer fabricated on a silicon wafer , 1979, IEEE Transactions on Electron Devices.

[16]  Masayoshi Esashi,et al.  Normally close microvalve and micropump fabricated on a silicon wafer , 1989, IEEE Micro Electro Mechanical Systems, , Proceedings, 'An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots'.

[17]  Sheng D. Chao,et al.  Two dimensional simulation on immunoassay for a biosensor with applying electrothermal effect , 2007 .

[18]  Paul Yager,et al.  Recirculating flow accelerates DNA microarray hybridization in a microfluidic device. , 2006, Lab on a chip.

[19]  Marc-Olivier Coppens,et al.  Knudsen self- and Fickian diffusion in rough nanoporous media , 2003 .

[20]  P. H. Yap,et al.  An optofluidic volume refractometer using Fabry-Pérot resonator with tunable liquid microlenses. , 2010, Biomicrofluidics.

[21]  Olivier Francais,et al.  Analytical study of microchannel and passive microvalve: application to micropump simulator , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[22]  J. W. Parce,et al.  Electrokinetically controlled microfluidic analysis systems. , 2000, Annual review of biophysics and biomolecular structure.

[23]  Rae M. Robertson,et al.  Diffusion of isolated DNA molecules: dependence on length and topology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Xiaobo Yu,et al.  Label‐free detection methods for protein microarrays , 2006, Proteomics.

[25]  G. Whitesides,et al.  Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. , 2002, Accounts of chemical research.

[26]  Xiaolin Zheng,et al.  Numerical characterization and optimization of the microfluidics for nanowire biosensors. , 2008, Nano letters.

[27]  B. Weigl,et al.  Lab-on-a-chip for drug development. , 2003, Advanced drug delivery reviews.

[28]  Luca De Stefano,et al.  Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon. , 2006, Optics express.

[29]  P. Corkum,et al.  Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching , 2006 .

[30]  Chun-Ping Jen,et al.  A Novel Design of Grooved Fibers for Fiber-Optic Localized Plasmon Resonance Biosensors , 2009, Sensors.

[31]  J. Homola Present and future of surface plasmon resonance biosensors , 2003, Analytical and bioanalytical chemistry.

[32]  Leigh T. Canham,et al.  Properties of Porous Silicon , 1998 .

[33]  Mengsu Yang,et al.  Microfluidics technology for manipulation and analysis of biological cells , 2006 .

[34]  Philippe M. Fauchet,et al.  Quantitative analysis of the sensitivity of porous silicon optical biosensors , 2006 .

[35]  Timothy S Gardner,et al.  Reverse-engineering transcription control networks. , 2005, Physics of life reviews.

[36]  Brittain,et al.  Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction , 2000, Analytical chemistry.

[37]  V. Subramanian,et al.  Inkjet-printed line morphologies and temperature control of the coffee ring effect. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[38]  D. L. Polla,et al.  BioMEMS applications in medicine , 2001, MHS2001. Proceedings of 2001 International Symposium on Micromechatronics and Human Science (Cat. No.01TH8583).

[39]  D G Myszka,et al.  Survey of the 1998 optical biosensor literature , 1999, Journal of molecular recognition : JMR.

[40]  Dario Pisignano,et al.  Two-photon patterning of a polymer containing Y-shaped azochromophores , 2009 .

[41]  D. di Bernardo,et al.  How to infer gene networks from expression profiles , 2007, Molecular systems biology.

[42]  J. Eijkel,et al.  Nanofluidics: what is it and what can we expect from it? , 2005 .

[43]  Guoqing Hu,et al.  Modeling micropatterned antigen-antibody binding kinetics in a microfluidic chip. , 2007, Biosensors & bioelectronics.

[44]  John P. Puccinelli,et al.  Thermal aging and reduced hydrophobic recovery of polydimethylsiloxane , 2006 .

[45]  A. Uhlir Electrolytic shaping of germanium and silicon , 1956 .

[46]  D. Beebe,et al.  PDMS absorption of small molecules and consequences in microfluidic applications. , 2006, Lab on a chip.

[47]  J. Sipe,et al.  Nanoscale porous silicon waveguide for label-free DNA sensing. , 2008, Biosensors & bioelectronics.

[48]  B. Mandracchia,et al.  Mapping electric fields generated by microelectrodes using optically trapped charged microspheres. , 2011, Lab on a chip.

[49]  S. Jacobson,et al.  Microfluidic devices for electrokinetically driven parallel and serial mixing , 1999 .

[50]  Luigi Moretti,et al.  Optical sensing of flammable substances using porous silicon microcavities , 2003 .

[51]  L. Canham,et al.  Vapor sensing using the optical properties of porous silicon Bragg mirrors , 1999 .

[52]  Sharon M. Weiss,et al.  Label-free porous silicon membrane waveguide for DNA sensing , 2008 .

[53]  I. Rendina,et al.  A Microsystem Based on Porous Silicon-Glass Anodic Bonding for Gas and Liquid Optical Sensing , 2006, Sensors (Basel, Switzerland).

[54]  I. Rendina,et al.  Modelling biochemical interactions in a microfluidic assisted porous silicon microarray for optical sensing , 2011, 2011 International Workshop on Biophotonics.

[55]  M. Gad-el-Hak The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture , 1999 .

[56]  Shuichi Shoji,et al.  Prototype miniature blood gas analyser fabricated on a silicon wafer , 1988 .

[57]  Luca De Stefano,et al.  Porous Silicon Based Resonant Mirrors for Biochemical Sensing , 2008, Sensors.

[58]  George C. Lisensky,et al.  Replication and Compression of Surface Structures with Polydimethylsiloxane Elastomer , 1999 .

[59]  Thomas Pfohl,et al.  Structural and dynamic properties of linker histone H1 binding to DNA. , 2010, Biomicrofluidics.

[60]  Ian Papautsky,et al.  Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping. , 2007, Lab on a chip.

[61]  Nam-Trung Nguyen,et al.  Micromixers?a review , 2005 .

[62]  J. Schultz,et al.  Hindered Diffusion in Microporous Membranes with Known Pore Geometry , 1970, Science.

[63]  Kun Lian,et al.  Microfluidic devices fabricated in poly(methyl methacrylate) using hot-embossing with integrated sampling capillary and fiber optics for fluorescence detection. , 2002, Lab on a chip.

[64]  K. Jensen,et al.  Cells on chips , 2006, Nature.

[65]  Fan-Gang Tseng,et al.  Microfluidic Systems for Biosensing , 2010, Sensors.

[66]  Stefano Pagliara,et al.  Rotational dynamics of optically trapped nanofibers. , 2009, Optics express.

[67]  N. Voelcker,et al.  Catalyzed Oxidative Corrosion of Porous Silicon Used as an Optical Transducer for Ligand–Receptor Interactions , 2008, Chembiochem : a European journal of chemical biology.

[68]  Optofluidic refractometer using resonant optical tunneling effect. , 2010, Biomicrofluidics.

[69]  Jurriaan Huskens,et al.  Microcontact Printing: Limitations and Achievements , 2009 .

[70]  I. Rea POROUS SILICON BASED OPTICAL DEVICES FOR BIOCHEMICAL SENSING , 2008 .

[71]  Chang Liu,et al.  Re-configurable fluid circuits by PDMS elastomer micromachining , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[72]  C. Fournier-Wirth,et al.  Nanotechnologies for pathogen detection: Future alternatives? , 2010, Biologicals : journal of the International Association of Biological Standardization.

[73]  Anna De Girolamo Del Mauro,et al.  Inkjet Etching of Polymer Surfaces to Manufacture Microstructures for OLED Applications , 2010 .

[74]  Tiecheng Zhou,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Microfluidic Blockinreactor Blockinarray Blockindevice Blockinfor Blockinmassively Parallel Blockinin-situ Blockinsynthesis Blockinof Blockinoligonucleotides , 2022 .

[75]  M. Ladisch,et al.  Poly(dimethylsiloxane) (PDMS) and Silicon Hybrid Biochip for Bacterial Culture , 2003 .

[76]  Ivo Rendina,et al.  Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions , 2010 .

[77]  B. Finlayson,et al.  Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. , 1999, Analytical chemistry.

[78]  G. Whitesides,et al.  Rapid prototyping of microfluidic switches in poly(dimethyl siloxane) and their actuation by electro-osmotic flow , 1999 .

[79]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[81]  D. Beebe,et al.  Fundamentals of microfluidic cell culture in controlled microenvironments. , 2010, Chemical Society reviews.

[82]  Gyu-Tae Kim,et al.  Maskless optical microscope lithography system. , 2009, The Review of scientific instruments.

[83]  Michael J. Sailor,et al.  A Porous Silicon Optical Biosensor: Detection of Reversible Binding of IgG to a Protein A-Modified Surface , 1999 .

[84]  Andreas Manz,et al.  Microfluidics: Applications for analytical purposes in chemistry and biochemistry , 2008, Electrophoresis.

[85]  A. deMello,et al.  Opportunities for microfluidic technologies in synthetic biology , 2009, Journal of The Royal Society Interface.

[86]  Ivo Rendina,et al.  Porous Silicon Integrated Photonic Devices for Biochemical Optical Sensing , 2011 .

[87]  Hanry Yu,et al.  A novel 3D mammalian cell perfusion-culture system in microfluidic channels. , 2007, Lab on a chip.

[88]  Overview and study focuses of microfluidic-based cell culture systems , 2009, 2009 Fourth International on Conference on Bio-Inspired Computing.

[89]  Luca De Stefano,et al.  A porous silicon based microfluidic array for the optical monitoring of biomolecular interactions , 2011, Optics + Optoelectronics.

[90]  C. Schmidt,et al.  Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.

[91]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[92]  George M. Whitesides,et al.  Solvent‐assisted microcontact molding: A convenient method for fabricating three‐dimensional structures on surfaces of polymers , 1997 .

[93]  George M. Whitesides,et al.  Fabrication of Three Dimensional Microstructures: Microtransfer Molding , 1996 .

[94]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[95]  Luca De Stefano,et al.  A microfluidics assisted porous silicon array for optical label-free biochemical sensing. , 2011, Biomicrofluidics.

[96]  Volker Lehmann,et al.  Porous silicon formation: A quantum wire effect , 1991 .

[97]  Wook Park,et al.  Optofluidic maskless lithography system for real-time synthesis of photopolymerized microstructures in microfluidic channels , 2007 .

[98]  Jeff Hasty,et al.  Monitoring dynamics of single-cell gene expression over multiple cell cycles , 2005, 2006 Bio Micro and Nanosystems Conference.

[99]  Kevin P. Homewood,et al.  Fast prototypign of microfluidic devices for separation science , 2001 .

[100]  Samuel K Sia,et al.  Effect of volume- and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays. , 2008, Lab on a chip.

[101]  Pasi Kallio,et al.  PDMS and its Suitability for Analytical Microfluidic Devices , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[102]  G. Whitesides,et al.  Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies , 2003, Electrophoresis.

[103]  D. Bernardo,et al.  A Yeast Synthetic Network for In Vivo Assessment of Reverse-Engineering and Modeling Approaches , 2009, Cell.

[104]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[105]  J. Bae,et al.  Comparing microarrays and next-generation sequencing technologies for microbial ecology research. , 2010, Trends in biotechnology.

[106]  Y Wang,et al.  Optofluidic microcavities: Dye-lasers and biosensors. , 2010, Biomicrofluidics.