Randomized leader election

We present an efficient randomized algorithm for leader election in large-scale distributed systems. The proposed algorithm is optimal in message complexity (O(n) for a set of n total processes), has round complexity logarithmic in the number of processes in the system, and provides high probabilistic guarantees on the election of a unique leader. The algorithm relies on a balls and bins abstraction and works in two phases. The main novelty of the work is in the first phase where the number of contending processes is reduced in a controlled manner. Probabilistic quorums are used to determine a winner in the second phase. We discuss, in detail, the synchronous version of the algorithm, provide extensions to an asynchronous version and examine the impact of failures.

[1]  Dahlia Malkhi,et al.  Estimating network size from local information , 2003, Information Processing Letters.

[2]  MaekawaMamoru A √N algorithm for mutual exclusion in decentralized systems , 1985 .

[3]  Jared Saia,et al.  Choosing a random peer , 2004, PODC '04.

[4]  Nancy A. Lynch,et al.  Impossibility of distributed consensus with one faulty process , 1985, JACM.

[5]  Mark Handley,et al.  A scalable content-addressable network , 2001, SIGCOMM '01.

[6]  Michael K. Reiter,et al.  Probabilistic quorum systems , 1997, PODC '97.

[7]  Andrew S. Tanenbaum,et al.  Distributed systems: Principles and Paradigms , 2001 .

[8]  Gerard Tel,et al.  Introduction to Distributed Algorithms: Contents , 2000 .

[9]  Indranil Gupta,et al.  A Probabilistically Correct Leader Election Protocol for Large Groups , 2000, DISC.

[10]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[11]  Ömer Egecioglu,et al.  Billiard Quorums on the Grid , 1997, Inf. Process. Lett..

[12]  Michael O. Rabin,et al.  N-Process Mutual Exclusion with Bounded Waiting by 4 Log_2 N-Valued Shared Variable , 1982, J. Comput. Syst. Sci..

[13]  Danny Dolev,et al.  On the minimal synchronism needed for distributed consensus , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[14]  Plethora : A Locality Enhancing Peer-to-Peer Network , 2004 .

[15]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[16]  Suresh Jagannathan,et al.  Randomized Protocols for Duplicate Elimination in Peer-to-Peer Storage Systems , 2005, Peer-to-Peer Computing.

[17]  Flaviu Cristian,et al.  A Highly Available Local Leader Election Service , 1999, IEEE Trans. Software Eng..

[18]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.

[19]  Indranil Gupta,et al.  Decentralized Schemes for Size Estimation in Large and Dynamic Groups , 2005, Fourth IEEE International Symposium on Network Computing and Applications.

[20]  Christos Gkantsidis,et al.  Random walks in peer-to-peer networks , 2004, IEEE INFOCOM 2004.

[21]  Paul M. B. Vitányi,et al.  Distributed match-making , 1988, Algorithmica.

[22]  Mamoru Maekawa,et al.  A N algorithm for mutual exclusion in decentralized systems , 1985, TOCS.

[23]  Shiding Lin,et al.  A Practical Distributed Mutual Exclusion Protocol in Dynamic Peer-to-Peer Systems , 2004, IPTPS.

[24]  Indranil Gupta Practical Algorithms for Size Estimation in Large and Dynamic Groups , 2004 .

[25]  Hector Garcia-Molina,et al.  Elections in a Distributed Computing System , 1982, IEEE Transactions on Computers.

[26]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[27]  M - Estimating Aggregates on a Peer-to-Peer Network , 2003 .

[28]  David R. Karger,et al.  Chord: a scalable peer-to-peer lookup protocol for internet applications , 2003, TNET.

[29]  Suresh Jagannathan,et al.  Locality in structured peer-to-peer networks , 2006, J. Parallel Distributed Comput..

[30]  Yuh-Jzer Joung,et al.  Asynchronous group mutual exclusion , 2000, Distributed Computing.

[31]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[32]  Israel Cidon,et al.  Propagation and Leader Election in a Multihop Broadcast Environment , 1998, DISC.

[33]  Nancy A. Lynch,et al.  Electing a leader in a synchronous ring , 1987, JACM.

[34]  JagannathanSuresh,et al.  Randomized Protocols for Duplicate Elimination in Peer-to-Peer Storage Systems , 2007 .

[35]  Wojciech Szpankowski,et al.  Average Case Analysis of Algorithms on Sequences: Szpankowski/Average , 2001 .

[36]  Stephen P. Boyd,et al.  Fastest Mixing Markov Chain on a Graph , 2004, SIAM Rev..

[37]  W. Szpankowski Average Case Analysis of Algorithms on Sequences , 2001 .

[38]  Eyal Kushilevitz,et al.  Randomized mutual exclusion algorithms revisited , 1992, PODC '92.

[39]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[40]  David Peleg,et al.  Time-Optimal Leader Election in General Networks , 1990, J. Parallel Distributed Comput..