EvOL-Neuron: Neuronal morphology generation

Virtual neurons are essential in computational neuroscience to study the relation between neuronal form and function. One way of obtaining virtual neurons is by algorithmic generation from scratch. However, a main disadvantage of current available generation methods is that they impose a priori limitations on the outcomes of the algorithms. We present a new tool, EvOL-Neuron, that overcomes this problem by putting a posteriori constraints on generated virtual neurons. We present a proof of principle and show that our method is particularly suited to investigate the neuronal form-function relation.

[1]  Bruce Howard McCormick,et al.  L-system modeling of neurons , 1994, Other Conferences.

[2]  R E Burke,et al.  A parsimonious description of motoneuron dendritic morphology using computer simulation , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  Arjen van Ooyen,et al.  The need for integrating neuronal morphology databases and computational environments in exploring neuronal structure and function , 2001, Anatomy and Embryology.

[4]  Gabriel Wittum,et al.  NeuGen: A tool for the generation of realistic morphology of cortical neurons and neural networks in 3D , 2006, Neurocomputing.

[5]  Arthur N Popper,et al.  Dendritic arbors on the saccule and lagena in the ear of the goldfish, Carassius auratus , 2000, Hearing Research.

[6]  Aristid Lindenmayer,et al.  Mathematical Models for Cellular Interactions in Development , 1968 .

[7]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[8]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[9]  P. Hamilton A language to describe the growth of neurites , 2004, Biological Cybernetics.

[10]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[11]  Giorgio A. Ascoli,et al.  Local Diameter Fully Constrains Dendritic Size in Basal but not Apical Trees of CA1 Pyramidal Neurons , 2005, Journal of Computational Neuroscience.

[12]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[13]  J F Evers,et al.  Progress in functional neuroanatomy: precise automatic geometric reconstruction of neuronal morphology from confocal image stacks. , 2005, Journal of neurophysiology.

[14]  R. Burke,et al.  Membrane area and dendritic structure in type‐identified triceps surae alpha motoneurons , 1987, The Journal of comparative neurology.

[15]  J C Pearson,et al.  Distribution of 5‐hydroxytryptamine‐immunoreactive boutons on α‐motoneurons in the lumbar spinal cord of adult cats , 1998, The Journal of comparative neurology.

[16]  Eric O. Postma,et al.  Shaping Realistic Neuronal Morphologies: An Evolutionary Computation Method , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[17]  G A Ascoli,et al.  Generation, description and storage of dendritic morphology data. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  Sergei Nirenburg,et al.  Generation , 2004, Machine Translation.

[19]  Andreas Schierwagen,et al.  Morphological analysis and modeling of neuronal dendrites. , 2004, Mathematical biosciences.

[20]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[21]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[22]  G. Ascoli Mobilizing the base of neuroscience data: the case of neuronal morphologies , 2006, Nature Reviews Neuroscience.

[23]  Arjen van Ooyen,et al.  The effect of dendritic topology on firing patterns in model neurons , 2002, Network.

[24]  U. Kuhnt,et al.  Morphological features of physiologically identified hypothalamic neurons as revealed by intracellular marking , 1979, Experimental Brain Research.

[25]  Gayle Tucker,et al.  A new approach to reconstruction models of dendritic branching patterns. , 2007, Mathematical biosciences.

[26]  A. Lindenmayer Mathematical models for cellular interactions in development. I. Filaments with one-sided inputs. , 1968, Journal of theoretical biology.

[27]  Nancy M. Amato,et al.  Neuron PRM: a framework for constructing cortical networks , 2003, Neurocomputing.

[28]  W. Kath,et al.  Computational modeling of dendrites. , 2005, Journal of neurobiology.

[29]  Jeffrey L. Krichmar,et al.  L-neuron: A modeling tool for the efficient generation and parsimonious description of dendritic morphology , 2000, Neurocomputing.

[30]  A. Lindenmayer Mathematical models for cellular interactions in development. II. Simple and branching filaments with two-sided inputs. , 1968, Journal of theoretical biology.

[31]  Giorgio A Ascoli,et al.  Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden Markov model , 2005, Hippocampus.

[32]  R. C Cannon,et al.  An on-line archive of reconstructed hippocampal neurons , 1998, Journal of Neuroscience Methods.

[33]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[34]  Giorgio A. Ascoli,et al.  Algorithmic reconstruction of complete axonal arborizations in rat hippocampal neurons , 2005, Neurocomputing.

[35]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[36]  Cezary Z. Janikow,et al.  A methodology for processing problem constraints in genetic programming , 1996 .

[37]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[38]  Tao Xiong,et al.  A combined SVM and LDA approach for classification , 2005, Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005..

[39]  Nicholas T. Carnevale,et al.  The NEURON Book: Epilogue , 2006 .

[40]  Vasant Honavar,et al.  Combined Biological Metaphors , 2001 .

[41]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.