Blood vessel classification into arteries and veins in retinal images

The prevalence of diabetes is expected to increase dramatically in coming years; already today it accounts for a major proportion of the health care budget in many countries. Diabetic Retinopathy (DR), a micro vascular complication very often seen in diabetes patients, is the most common cause of visual loss in working age population of developed countries today. Since the possibility of slowing or even stopping the progress of this disease depends on the early detection of DR, an automatic analysis of fundus images would be of great help to the ophthalmologist due to the small size of the symptoms and the large number of patients. An important symptom for DR are abnormally wide veins leading to an unusually low ratio of the average diameter of arteries to veins (AVR). There are also other diseases like high blood pressure or diseases of the pancreas with one symptom being an abnormal AVR value. To determine it, a classification of vessels as arteries or veins is indispensable. As to our knowledge despite the importance there have only been two approaches to vessel classification yet. Therefore we propose an improved method. We compare two feature extraction methods and two classification methods based on support vector machines and neural networks. Given a hand-segmentation of vessels our approach achieves 95.32% correctly classified vessel pixels. This value decreases by 10% on average, if the result of a segmentation algorithm is used as basis for the classification.

[1]  Shankar M. Krishnan,et al.  Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter , 2002, IEEE Transactions on Biomedical Engineering.

[2]  Mong-Li Lee,et al.  A piecewise Gaussian model for profiling and differentiating retinal vessels , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[3]  A.D. Hoover,et al.  Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response , 2000, IEEE Transactions on Medical Imaging.

[4]  Michelle Yan,et al.  Knowledge Based Image Enhancement Using Neural Networks , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[5]  Roberto Marcondes Cesar Junior,et al.  Blood vessels segmentation in retina: preliminary assessment of the mathematical morphology and of the wavelet transform techniques , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.

[6]  Alfredo Ruggeri,et al.  A divide et impera strategy for automatic classification of retinal vessels into arteries and veins , 2003, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439).