A framework for the expansion of spatial features based on semantic footprints

Geographic feature expansion is a common task in Geographic Information Systems (GIS). Identifying and integrating geographic features is a challenging task since many of their spatial and non-spatial properties are described in different sources. We tackle this expansion problem by defining semantic footprints as a measure of similarity among features. Furthermore, we propose three quantifiers of semantic similarity: spatial, dimensional, and ontological affinity. We show how these measures dilute, concentrate, harden, or concede the feature space, and provide useful insights into the semantic relationships of the spatial entities. Experiments demonstrate the effectiveness of our approach in semantically associating the most appropriate spatial features.

[1]  Sungsoon Hwang,et al.  Using Formal Ontology for Integrated Spatial Data Mining , 2004, ICCSA.

[2]  Altigran Soares da Silva,et al.  Finding similar identities among objects from multiple web sources , 2003, WIDM '03.

[3]  RahmErhard,et al.  A survey of approaches to automatic schema matching , 2001, VLDB 2001.

[4]  Erhard Rahm,et al.  Matching large XML schemas , 2004, SGMD.

[5]  Alfred V. Aho,et al.  On finding lowest common ancestors in trees , 1973, SIAM J. Comput..

[6]  Erik Rauch,et al.  A confidence-based framework for disambiguating geographic terms , 2003, HLT-NAACL 2003.

[7]  Chang-Tien Lu,et al.  Advances in GML for Geospatial Applications , 2007, GeoInformatica.

[8]  Craig A. Knoblock,et al.  Quality-driven geospatial data integration , 2007, GIS.

[9]  Sergio Flesca,et al.  Retrieving XML data from heterogeneous sources through vague querying , 2009, TOIT.

[10]  Hanan Samet,et al.  Augmenting spatio-textual search with an infectious disease ontology , 2008, 2008 IEEE 24th International Conference on Data Engineering Workshop.

[11]  Felix Naumann,et al.  Subsumption and complementation as data fusion operators , 2010, EDBT '10.

[12]  Lise Getoor,et al.  Entity resolution in geospatial data integration , 2006, GIS '06.

[13]  Wenfei Fan,et al.  Composable XML integration grammars , 2004, CIKM '04.

[14]  Philip A. Bernstein,et al.  Industrial-strength schema matching , 2004, SGMD.

[15]  Wan D. Bae,et al.  An interactive framework for raster data spatial joins , 2007, GIS.

[16]  Pedro M. Domingos,et al.  Reconciling schemas of disparate data sources: a machine-learning approach , 2001, SIGMOD '01.

[17]  Catriel Beeri,et al.  Object Fusion in Geographic Information Systems , 2004, VLDB.

[18]  Erhard Rahm,et al.  A survey of approaches to automatic schema matching , 2001, The VLDB Journal.

[19]  Diana Inkpen,et al.  Applications of corpus-based semantic similarity and word segmentation to database schema matching , 2008, The VLDB Journal.

[20]  Torsten Suel,et al.  Efficient query processing in geographic web search engines , 2006, SIGMOD Conference.

[21]  Christian S. Jensen,et al.  Efficient Retrieval of the Top-k Most Relevant Spatial Web Objects , 2009, Proc. VLDB Endow..

[22]  Pável Calado,et al.  Structure-based inference of xml similarity for fuzzy duplicate detection , 2007, CIKM '07.