Strain hardening, strain rate sensitivity, and ductility of nanostructured metals

This paper presents an overview of the strain hardening and strain rate hardening behavior of nanostructured and ultrafine-grained metals. The experimental findings obtained in our laboratory are summarized, with some recent data for ultrafine-grained Cu presented as a model case. Due to the diminishing strain hardening capacity and inadequate strain rate hardening, plastic instabilities in the form of inhomogeneous and localized deformation such as necking and shear banding often contribute to the low ductility of nanostructured and ultrafine-grained metals at room temperature (RT). The observed grain size dependence of the strain rate sensitivity is also discussed in terms of its implications for new deformation mechanisms when the grain size is in the nanocrystalline (nc) and ultrafine regime.

[1]  C. Koch,et al.  Compressive mechanical behavior of nanocrystalline Fe investigated with an automated ball indentation technique , 1998 .

[2]  K. T. Ramesh,et al.  Compressive behavior of an electrodeposited nanostructured copper at quasistatic and high strain rates , 2001 .

[3]  J. Weertman,et al.  Mechanical behavior of nanocrystalline Cu and Pd , 1991 .

[4]  H. Conrad Grain size dependence of the plastic deformation kinetics in Cu , 2003 .

[5]  M. Mayo,et al.  Structure and Mechanical Behavior of Bulk Nanocrystalline Materials , 1999 .

[6]  Peter M. Derlet,et al.  Grain-boundary sliding in nanocrystalline fcc metals , 2001 .

[7]  T. Christman,et al.  Synthesis, processing, and deformation of bulk nanophase Fe-28Al-2Cr intermetallic , 1994 .

[8]  K. Lu,et al.  INTERFACE CONTROLLED DIFFUSIONAL CREEP OF NANOCRYSTALLINE PURE COPPER , 1999 .

[9]  E. W. Hart Theory of the tensile test , 1967 .

[10]  K. Lu,et al.  COLD ROLLING OF BULK NANOCRYSTALLINE COPPER , 2001 .

[11]  David J. Smith,et al.  Observations of grain boundary structure in submicrometer-grained Cu and Ni using high-resolution electron microscopy , 1998 .

[12]  T. Haubold,et al.  Nanocrystalline intermetallic compounds — An approach to ductility? , 1991 .

[13]  Evan Ma,et al.  Microsample tensile testing of nanocrystalline copper , 2003 .

[14]  K. T. Ramesh,et al.  Failure mode and dynamic behavior of nanophase iron under compression , 1999 .

[15]  John E. Carsley,et al.  Mechanical behavior of a bulk nanostructured iron alloy , 1998 .

[16]  R. Valiev,et al.  Low-temperature superplasticity in nanostructured nickel and metal alloys , 1999, Nature.

[17]  K. T. Ramesh,et al.  Microstructure and mechanical properties of tantalum after equal channel angular extrusion (ECAE) , 2003 .

[18]  H. V. Swygenhoven,et al.  Plastic behavior of nanophase Ni: A molecular dynamics computer simulation , 1997 .

[19]  I. Ovid’ko,et al.  Deformation of Nanostructures , 2002, Science.

[20]  D. Jang,et al.  Grain-size dependence of plastic deformation in nanocrystalline Fe , 2003 .

[21]  H. Mizubayashi,et al.  Mechanical property of high density nanocrystalline gold prepared by gas deposition method , 1999 .

[22]  L. Pasquini,et al.  The influence of grain size on the mechanical properties of nanocrystalline aluminium , 1997 .

[23]  I. V. Aleksandrov,et al.  Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, and Al-4Cu-0.5Zr , 1997 .

[24]  K. T. Ramesh,et al.  Evolution and microstructure of shear bands in nanostructured Fe , 2002 .

[25]  G. Subhash,et al.  Consolidation and high strain rate mechanical behavior of nanocrystalline tantalum powder , 1999 .

[26]  M. Victoria,et al.  Nanocrystalline electrodeposited Ni: microstructure and tensile properties , 2002 .

[27]  C. Koch,et al.  Mechanical properties in tension of mechanically attrited nanocrystalline iron by the use of the miniaturized disk bend test , 1998 .

[28]  Fei Lu,et al.  Range and thermal behaviour studies of Tm+, Er+ and Yb+ implanted into LiNbO3 and quartz crystal , 1997 .

[29]  C. Koch Ductility in Nanostructured and Ultra Fine-Grained Materials: Recent Evidence for Optimism , 2002 .

[30]  S. Kalidindi,et al.  Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins , 1997 .

[31]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[32]  Yinmin M Wang,et al.  Enhanced tensile ductility and toughness in nanostructured Cu , 2002 .

[33]  K. T. Ramesh,et al.  Nano-structured vanadium: processing and mechanical properties under quasi-static and dynamic compression , 2004 .

[34]  K. Jacobsen,et al.  Softening of nanocrystalline metals at very small grain sizes , 1998, Nature.

[35]  D. G. Morris,et al.  Ductility of Nanostructured Materials , 1999 .

[36]  K. T. Ramesh,et al.  Deformation behavior and plastic instabilities of ultrafine-grained titanium , 2001 .

[37]  Robert E. Reed-Hill,et al.  Physical Metallurgy Principles , 1972 .

[38]  Atomistic Modeling of Strength of Nanocrystalline Metals , 2003 .

[39]  R. Valiev,et al.  Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation , 2002 .

[40]  R. Valiev,et al.  Deformation Behaviour of Ultrafine-Grained Materials , 1996 .

[41]  J. Weertman,et al.  Microsample tensile testing of nanocrystalline metals , 2000 .

[42]  K. T. Ramesh,et al.  Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron , 2003 .