On the Jensen type inequality for generalized Sugeno integral

We prove necessary and sufficient conditions for the validity of Jensen type inequalities for generalized Sugeno integral. Our proofs make no appeal to the continuity of neither the fuzzy measure nor the operators. For several choices of operators, we characterize the classes of functions for which the corresponding inequalities are satisfied.

[1]  Gregory T. Adams,et al.  The fuzzy integral , 1980 .

[2]  A. Flores-Franulic,et al.  A Chebyshev type inequality for fuzzy integrals , 2007, Appl. Math. Comput..

[3]  A. Flores-Franulic,et al.  A Jensen type inequality for fuzzy integrals , 2007, Inf. Sci..

[4]  Radko Mesiar,et al.  General Chebyshev type inequalities for universal integral , 2012, Inf. Sci..

[5]  A. Flores-Franulic,et al.  The fuzzy integral for monotone functions , 2007, Appl. Math. Comput..

[6]  Dug Hun Hong A Liapunov type inequality for Sugeno integrals , 2011 .

[7]  Radko Mesiar,et al.  Liapunov‐type inequality for universal integral , 2012, Int. J. Intell. Syst..

[8]  N. Shilkret Maxitive measure and integration , 1971 .

[9]  Yurilev Chalco-Cano,et al.  H-continuity of fuzzy measures and set defuzzification , 2006, Fuzzy Sets Syst..

[10]  G. Klir,et al.  Generalized Measure Theory , 2008 .

[11]  Yao Ouyang,et al.  A note on a Carlson-type inequality for the Sugeno integral , 2012, Appl. Math. Lett..

[12]  Radko Mesiar,et al.  On the Chebyshev type inequality for seminormed fuzzy integral , 2009, Appl. Math. Lett..

[13]  Gwo-Hshiung Tzeng,et al.  Using fuzzy measures and habitual domains to analyze the public attitude and apply to the gas taxi policy , 2002, Eur. J. Oper. Res..

[14]  Vicenç Torra,et al.  Fuzzy measures and integrals in evaluation of strategies , 2007, Inf. Sci..

[15]  A. Flores-Franulic,et al.  On the level-continuity of fuzzy integrals , 1996, Fuzzy Sets Syst..

[16]  A. Flores-Franulic,et al.  A convolution type inequality for fuzzy integrals , 2008, Appl. Math. Comput..

[17]  Radko Mesiar,et al.  On some advanced type inequalities for Sugeno integral and T-(S-)evaluators , 2012, Inf. Sci..

[18]  菅野 道夫,et al.  Theory of fuzzy integrals and its applications , 1975 .

[19]  Vicenç Torra,et al.  The $h$-Index and the Number of Citations: Two Fuzzy Integrals , 2008, IEEE Transactions on Fuzzy Systems.

[20]  Radko Mesiar,et al.  General Chebyshev type inequalities for Sugeno integrals , 2009, Fuzzy Sets Syst..

[21]  A. Flores-Franulic,et al.  A Hardy-type inequality for fuzzy integrals , 2008, Appl. Math. Comput..

[22]  J. Caballero,et al.  A Cauchy–Schwarz type inequality for fuzzy integrals , 2010 .

[23]  Yi-Chung Hu,et al.  Fuzzy integral-based perceptron for two-class pattern classification problems , 2007, Inf. Sci..

[24]  G. Klir,et al.  Fuzzy Measure Theory , 1993 .