Unit commitment - a survey and comparison of conventional and nature inspired algorithms

Unit commitment problem UCP which has a significant influence on secure and economic operation of power systems is considered to be one of the most difficult optimisation problems due to the number/type of variables and constraints present. To provide quality solutions to UCP several solution methodologies that include deterministic and stochastic search algorithms have been proposed. Deterministic and stochastic algorithms have their own share of advantages and disadvantages. In this paper, we provide a literature survey on the algorithms developed for UCP and try to compare their performance on some standard benchmark problems by taking the results from the literature. The literature survey along with the performance comparison will be useful for the researchers in the area of power engineering.

[1]  T.A.A. Victoire,et al.  Unit commitment by a tabu-search-based hybrid-optimisation technique , 2005 .

[2]  A. Merlin,et al.  A New Method for Unit Commitment at Electricite De France , 1983, IEEE Transactions on Power Apparatus and Systems.

[3]  S. M. Shahidehpour,et al.  A multi-stage intelligent system for unit commitment , 1992 .

[4]  Yanbin Yuan,et al.  Unit commitment problem using enhanced particle swarm optimization algorithm , 2011, Soft Comput..

[5]  Tomonobu Senjyu,et al.  A fast technique for unit commitment problem by extended priority list , 2003 .

[6]  Chun-Lung Chen,et al.  Unit commitment with probabilistic reserve: An IPSO approach , 2007 .

[7]  Shokri Z. Selim,et al.  Integrating genetic algorithms, tabu search, and simulated annealing for the unit commitment problem , 1999 .

[8]  Alice E. Smith,et al.  A Seeded Memetic Algorithm for Large Unit Commitment Problems , 2002, J. Heuristics.

[9]  Bala Venkatesh,et al.  Unit commitment - a fuzzy mixed integer Linear Programming solution , 2007 .

[10]  Narayana Prasad Padhy,et al.  Comparison and application of evolutionary programming techniques to combined economic emission dispatch with line flow constraints , 2003 .

[11]  D. Dasgupta,et al.  Thermal unit commitment using genetic algorithms , 1994 .

[12]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[13]  R. Adapa,et al.  Multi-area unit commitment via sequential method and a DC power flow network model , 1994 .

[14]  Siba K. Udgata,et al.  Particle swarm optimisation with stochastic ranking for constrained numerical and engineering benchmark problems , 2012, Int. J. Bio Inspired Comput..

[15]  Minqiang Li,et al.  A floating-point genetic algorithm for solving the unit commitment problem , 2007, Eur. J. Oper. Res..

[16]  Hugh Rudnick,et al.  Short-term hydrothermal generation scheduling model using a genetic algorithm , 2003 .

[17]  Ahmed Yousuf Saber,et al.  Scalable unit commitment by memory-bounded ant colony optimization with A∗ local search , 2008 .

[18]  Chuangxin Guo,et al.  An improved particle swarm optimization algorithm for unit commitment , 2006 .

[19]  Lingfeng Wang,et al.  Unit commitment considering generator outages through a mixed-integer particle swarm optimization algorithm , 2006, 2006 IEEE Region 5 Conference.

[20]  S. M. Shahidehpour,et al.  A heuristic short-term unit commitment , 1991 .

[21]  Nasser Sadati,et al.  Unit Commitment Using Particle Swarm-Based-Simulated Annealing Optimization Approach , 2007, 2007 IEEE Swarm Intelligence Symposium.

[22]  H. Chen,et al.  Cooperative Coevolutionary Algorithm for Unit Commitment , 2002, IEEE Power Engineering Review.

[23]  F. N. Lee,et al.  Short-term thermal unit commitment-a new method , 1988 .

[24]  Eiichi Tanaka,et al.  An Evolutionary Programming Solution to the Unit Commitment Problem , 1997 .

[25]  Rafael S. Parpinelli,et al.  New inspirations in swarm intelligence: a survey , 2011, Int. J. Bio Inspired Comput..

[26]  Mainak Mazumdar,et al.  Stochastic models for power generation system production costs , 1995 .

[27]  K. D. Le,et al.  A Global Optimization Method for Scheduling Thermal Generation, Hydro Generation, and Economy Purchases , 1983, IEEE Power Engineering Review.

[28]  Hitoshi Iba,et al.  ? Constrained Differential Evolution for Economic Dispatch with Valve-point Effect , 2011, Int. J. Bio Inspired Comput..

[29]  M. Rashidinejad,et al.  An implementation of harmony search algorithm to unit commitment problem , 2010 .

[30]  Chuanwen Jiang,et al.  A matrix real-coded genetic algorithm to the unit commitment problem , 2006 .

[31]  Juan Luis Fernández-Martínez,et al.  A Brief Historical Review of Particle Swarm Optimization (PSO) , 2012 .

[32]  Robert E. Smith,et al.  A genetic algorithm based approach to thermal unit commitment of electric power systems , 1995 .

[33]  Xiaohui Yuan,et al.  Application of enhanced discrete differential evolution approach to unit commitment problem , 2009 .

[34]  Bijaya K. Panigrahi,et al.  Bio-inspired optimisation for economic load dispatch: a review , 2014, Int. J. Bio Inspired Comput..

[35]  W. Ongsakul,et al.  Ant colony search algorithm for unit commitment , 2003, IEEE International Conference on Industrial Technology, 2003.

[36]  D. Srinivasan,et al.  A priority list-based evolutionary algorithm to solve large scale unit commitment problem , 2004, 2004 International Conference on Power System Technology, 2004. PowerCon 2004..

[37]  Bruce F. Wollenberg,et al.  A unit commitment expert system (power system control) , 1988 .

[38]  T.O. Ting,et al.  A novel approach for unit commitment problem via an effective hybrid particle swarm optimization , 2006, IEEE Transactions on Power Systems.

[39]  Yanbin Yuan,et al.  An improved binary particle swarm optimization for unit commitment problem , 2009, Expert Syst. Appl..

[40]  Caro Lucas,et al.  Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition , 2007, 2007 IEEE Congress on Evolutionary Computation.

[41]  Muzaffar Eusuff,et al.  Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization , 2006 .

[42]  Enrique Castillo,et al.  Expert Systems: Uncertainty and Learning , 1991 .

[43]  Tomonobu Senjyu,et al.  Emerging solution of large-scale unit commitment problem by Stochastic Priority List , 2006 .

[44]  Roy Billinton,et al.  Unit commitment in interconnected generating systems using a probabilistic technique , 1990 .

[45]  Istvan Erlich,et al.  A Variable-Dimension Optimization Approach to Unit Commitment Problem , 2010, IEEE Transactions on Power Systems.

[46]  S. M. Shahidehpour,et al.  Short-term unit commitment expert system , 1990 .

[47]  R. Nieva,et al.  Lagrangian Reduction of Search-Range for Large-Scale Unit Commitment , 1987, IEEE Power Engineering Review.

[48]  K. W. Edwin,et al.  Integer Programming Approach to the Problem of Optimal Unit Commitment with Probabilistic Reserve Determination , 1978, IEEE Transactions on Power Apparatus and Systems.

[49]  Tomonobu Senjyu,et al.  Unit commitment computation by fuzzy adaptive particle swarm optimisation , 2007 .

[50]  Almoataz Y. Abdelaziz,et al.  Reactive power compensation in distribution networks using cuckoo search algorithm , 2014, Int. J. Bio Inspired Comput..

[51]  Jong-Bae Park,et al.  A Thermal Unit Commitment Approach Using an Improved Quantum Evolutionary Algorithm , 2009 .

[52]  A. D. Patton,et al.  Optimal Thermal Generating Unit Commitment , 1971 .

[53]  M. Carrion,et al.  A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem , 2006, IEEE Transactions on Power Systems.

[54]  Walter L. Snyder,et al.  Dynamic Programming Approach to Unit Commitment , 1987, IEEE Transactions on Power Systems.

[55]  K. P. Wong,et al.  Artificial intelligence algorithm for daily scheduling of thermal generators , 1991 .

[56]  Costas Vournas,et al.  Unit commitment by an enhanced simulated annealing algorithm , 2006 .

[57]  A. Bakirtzis,et al.  A solution to the unit-commitment problem using integer-coded genetic algorithm , 2004, IEEE Transactions on Power Systems.

[58]  Bosheng Song,et al.  An Overview of Membrane Computing , 2012 .

[59]  Swapan Kumar Goswami,et al.  Differential Evolution Algorithm for Solving Unit Commitment with Ramp Constraints , 2008 .

[60]  M. H. Wong,et al.  An evolving neural network approach in unit commitment solution , 2000, Microprocess. Microsystems.

[61]  G B Gharehpetian,et al.  Unit Commitment Problem Solution Using Shuffled Frog Leaping Algorithm , 2011, IEEE Transactions on Power Systems.

[62]  N.P. Padhy,et al.  Unit commitment-a bibliographical survey , 2004, IEEE Transactions on Power Systems.

[63]  H. Chiang,et al.  A Novel Solution Methodology for Solving Large-scale Thermal Unit Commitment Problems , 2010 .

[64]  Md. Sayeed Salam,et al.  Integrating an expert system into a thermal unit-commitment algorithm , 1991 .

[65]  Arthur I. Cohen,et al.  A Branch-and-Bound Algorithm for Unit Commitment , 1983, IEEE Transactions on Power Apparatus and Systems.

[66]  S. M. Shahidehpour,et al.  A hybrid artificial neural network-dynamic programming approach to unit commitment , 1992 .

[67]  Jin Hao,et al.  Ant colony optimization algorithm with random perturbation behavior to the problem of optimal unit commitment with probabilistic spinning reserve determination , 2004 .

[68]  R. H. Kerr,et al.  Unit commitment , 1966, Mathematical Programming for Power Systems Operation with Applications in Python.

[69]  Kit Po Wong,et al.  An Advanced Quantum-Inspired Evolutionary Algorithm for Unit Commitment , 2011, IEEE Transactions on Power Systems.

[70]  S. M. Shahidehpour,et al.  Effects of ramp-rate limits on unit commitment and economic dispatch , 1993 .

[71]  Malcolm Irving,et al.  A genetic algorithm for generator scheduling in power systems , 1996 .

[72]  K. Hara,et al.  A Method for Planning Economic Unit Commitment and Maintenance of Thermal Power Systems , 1966 .

[73]  Hiroshi Sasaki,et al.  A solution method of unit commitment by artificial neural networks , 1992 .

[74]  Tomonobu Senjyu,et al.  Fuzzy unit commitment solution—A novel twofold simulated annealing approach , 2007 .

[75]  M. R. Mohan,et al.  An evolutionary programming-based tabu search method for solving the unit commitment problem , 2004, IEEE Transactions on Power Systems.

[76]  Chuan-Ping Cheng,et al.  Unit commitment by Lagrangian relaxation and genetic algorithms , 2000 .

[77]  S. M. Shahidehpour,et al.  Hydrothermal unit commitment with probabilistic constraints using segmentation method , 1990 .

[78]  D. P. Kothari,et al.  An expert system approach to the unit commitment problem , 1995 .

[79]  T. Lau,et al.  Quantum-Inspired Evolutionary Algorithm Approach for Unit Commitment , 2009, IEEE Transactions on Power Systems.

[80]  Yuan-Yih Hsu,et al.  Fuzzy dynamic programming: an application to unit commitment , 1991 .

[81]  Almoataz Y. Abdelaziz,et al.  Application of Ant Colony Optimization and Harmony Search Algorithms to Reconfiguration of Radial Distribution Networks with Distributed Generations , 2012 .

[82]  Mark O'Malley,et al.  Augmented Hopfield network for unit commitment and economic dispatch , 1997 .

[83]  B. Vahidi,et al.  A Solution to the Unit Commitment Problem Using Imperialistic Competition Algorithm , 2012, IEEE Transactions on Power Systems.

[84]  P. G. Lowery,et al.  Generating Unit Commitment by Dynamic Programming , 1966 .

[85]  Gerald B. Sheblé,et al.  Genetic-based unit commitment algorithm , 1996 .

[86]  A. H. Mantawy,et al.  Unit commitment by tabu search , 1998 .

[87]  C.-P. Cheng,et al.  Unit commitment by annealing-genetic algorithm , 2002 .

[88]  J. Birge,et al.  Using integer programming to refine Lagrangian-based unit commitment solutions , 2000 .

[89]  Tomonobu Senjyu,et al.  A unit commitment problem by using genetic algorithm based on unit characteristic classification , 2002, 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309).

[90]  John R. Birge,et al.  A stochastic model for the unit commitment problem , 1996 .

[91]  N. Yamashita,et al.  New Local Search Methods for Improving the Lagrangian-Relaxation-Based Unit Commitment Solution , 2010, IEEE Transactions on Power Systems.

[92]  K. Chandrasekaran,et al.  Optimal Deviation Based Firefly Algorithm Tuned Fuzzy Design for Multi-Objective UCP , 2013, IEEE Transactions on Power Systems.

[93]  Po-Hung Chen,et al.  Two-Level Hierarchical Approach to Unit Commitment Using Expert System and Elite PSO , 2012, IEEE Transactions on Power Systems.

[94]  Hong-Tzer Yang,et al.  A parallel genetic algorithm approach to solving the unit commitment problem: implementation on the transputer networks , 1997 .

[95]  H. A. Smolleck,et al.  A fuzzy logic approach to unit commitment , 1997 .

[96]  Z. Gaing Discrete particle swarm optimization algorithm for unit commitment , 2003, 2003 IEEE Power Engineering Society General Meeting (IEEE Cat. No.03CH37491).

[97]  A. H. Mantawy,et al.  A simulated annealing algorithm for unit commitment , 1998 .

[98]  F.N. Lee,et al.  The Application of Commitment Utilization Factor (CUF) to Thermal Unit Commitment , 1991, IEEE Power Engineering Review.

[99]  R. Adapa,et al.  The effect of load uncertainty on unit commitment risk , 1994 .

[100]  Anastasios G. Bakirtzis,et al.  A genetic algorithm solution to the unit commitment problem , 1996 .

[101]  K. S. Swarp,et al.  Unit Connuitment Solution Methodology Using Genetic Algorithm , 2002, IEEE Power Engineering Review.

[102]  R.-H. Liang,et al.  Thermal generating unit commitment using an extended mean field annealing neural network , 2000 .

[103]  J. D. Guy Security Constrained Unit Commitment , 1971 .

[104]  B. Vahidi,et al.  Bacterial Foraging-Based Solution to the Unit-Commitment Problem , 2009, IEEE Transactions on Power Systems.

[105]  V. Palanisamy,et al.  A dynamic programming based fast computation Hopfield neural network for unit commitment and economic dispatch , 2007 .

[106]  Ching-Lien Huang,et al.  Application of genetic-based neural networks to thermal unit commitment , 1997 .

[107]  F. Albuyeh,et al.  Evaluation of Dynamic Programming Based Methods and Multiple area Representation for Thermal Unit Commitments , 1981, IEEE Transactions on Power Apparatus and Systems.

[108]  W. Ongsakul,et al.  Unit commitment by enhanced adaptive Lagrangian relaxation , 2004, IEEE Transactions on Power Systems.

[109]  N. Sisworahardjo,et al.  Unit commitment using the ant colony search algorithm , 2002, LESCOPE'02. 2002 Large Engineering Systems Conference on Power Engineering. Conference Proceedings.

[110]  Sohrab Khanmohammadi,et al.  A new three-stage method for solving unit commitment problem , 2010 .

[111]  Francisco D. Galiana,et al.  Unit commitment by simulated annealing , 1990 .

[112]  H. H. Balci,et al.  Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method , 2004 .

[113]  C.K. Pang,et al.  Optimal short-term thermal unit commitment , 1976, IEEE Transactions on Power Apparatus and Systems.

[114]  B. J. Cory,et al.  Application of neural networks to unit commitment , 1999, 1999 IEEE Africon. 5th Africon Conference in Africa (Cat. No.99CH36342).

[115]  Abdesslem Layeb,et al.  A novel quantum inspired cuckoo search for knapsack problems , 2011, Int. J. Bio Inspired Comput..

[116]  Jong-Bae Park,et al.  A New Quantum-Inspired Binary PSO: Application to Unit Commitment Problems for Power Systems , 2010, IEEE Transactions on Power Systems.

[117]  F. N. Lee,et al.  Unit commitment risk with sequential rescheduling , 1991 .

[118]  Jorge Pinho de Sousa,et al.  Using GRASP to Solve the Unit Commitment Problem , 2003, Ann. Oper. Res..

[119]  Suzannah Yin Wa Wong,et al.  An enhanced simulated annealing approach to unit commitment , 1998 .

[120]  Gerald B. Sheblé,et al.  Unit commitment literature synopsis , 1994 .