Sonic boom minimization using inverse design and probabilistic acoustic propagation

near-field signature is more accurately represented. The problem of F-function parameters’ estimation is reformulated as a gradient-based optimization problem and solved. Sonic boom propagation is carried out in a probabilistic fashion using parametric atmospheric models and statistical techniques. A bilevel pseudoinverse optimization is performed using coarse-grained parallel genetic algorithms to design aircraft that meet low sonic boom requirements under atmospheric uncertainty. The optimization analysis is split into two cycles with multiple conflicting objectives. Results are presented and discussed.

[1]  Bart Lipkens,et al.  A model experiment to study sonic boom propagation through turbulence. Part III: validation of sonic boom propagation models. , 2002, The Journal of the Acoustical Society of America.

[2]  V. Sparrow,et al.  A computational analysis of sonic booms penetrating a realistic ocean surface. , 2001, The Journal of the Acoustical Society of America.

[3]  Dimitri N. Mavris,et al.  Methodology for Examining the Simultaneous Impact of Requirements, Vehicle Characteristics, and Technologies on Military Aircraft Design , 2000 .

[4]  John M. Morgenstern,et al.  F-5 Shaped Sonic Boom Demonstrator's Persistence of Boom Shaping Reduction through Turbulence , 2005 .

[5]  Sriram K. Rallabhandi,et al.  Sonic boom minimization through vehicle shape optimization and probabilistic acoustic propagation , 2005 .

[6]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[7]  Donald Howe,et al.  Sonic Boom Reduction Through the Use of Non-Axisymmetric Configuration Shaping , 2003 .

[8]  A. R. George,et al.  Sonic‐Boom Minimization , 1971 .

[9]  Domenic J. Maglieri,et al.  Effects of atmospheric irregularities on sonic-boom propagation. , 1972 .

[10]  Michael A. Stephens,et al.  Goodness of fit for the extreme value distribution , 1977 .

[11]  Bart Lipkens,et al.  Model experiment to study sonic boom propagation through turbulence. Part I: General results , 1998 .

[12]  A. R. George,et al.  Sonic Boom Minimization Including Both Front and Rear Shocks , 1971 .

[13]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[14]  L. B. Jones Lower Bounds for the Pressure Jump of the Bow Shock of a Supersonic Transport , 1970 .

[15]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[16]  Wu Li,et al.  Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts , 2008 .

[17]  F. de Toro,et al.  PSFGA: a parallel genetic algorithm for multiobjective optimization , 2002, Proceedings 10th Euromicro Workshop on Parallel, Distributed and Network-based Processing.

[18]  Charbel Farhat,et al.  Shape Optimization Methodology for Reducing the Sonic Boom Initial Pressure Rise , 2007 .

[19]  C. M. Darden,et al.  Sonic-boom minimization with nose-bluntness relaxation , 1979 .

[20]  Juan J. Alonso,et al.  SONIC BOOM REDUCTION USING AN ADJOINT METHOD FOR WING-BODY CONFIGURATIONS IN SUPERSONIC FLOW , 2002 .

[21]  Dimitri N. Mavris,et al.  An Unstructured Wave Drag code for the Preliminary Design of Future Supersonic Aircraft , 2003 .

[22]  A. R. George,et al.  Propagation of weak shock waves through turbulence , 1972, Journal of Fluid Mechanics.

[23]  J. Edwards,et al.  Sonic-boom generated sound field under a wavy air–water interface: Analyses for incident N waves , 2005 .

[24]  Charbel Farhat,et al.  A shape optimization methodology for reducing the sonic boom initial pressure rise , 2002 .

[25]  Richard Raspet,et al.  Propagation of medium strength shock waves through the atmosphere , 1987 .

[26]  G. Whitham The flow pattern of a supersonic projectile , 1952 .

[27]  Mansur H. Samadzadeh,et al.  A coarse-grain parallel genetic algorithm for finding Ramsey Numbers , 2003, SAC '03.

[28]  D. Howe,et al.  Engine placement for sonic boom mitigation , 2002 .

[29]  Richard Raspet,et al.  Modification of sonic boom wave forms during propagation from the source to the ground. , 1998, The Journal of the Acoustical Society of America.

[30]  A. R. George,et al.  Sonic boom waveforms and amplitudes in a real atmosphere , 1969 .

[31]  Preston A. Henne,et al.  Case for Small Supersonic Civil Aircraft , 2005 .

[32]  Sriram K. Rallabhandi,et al.  Sonic Boom Modelling Under Atmospheric Uncertainty , 2004 .

[33]  R. J. Mack A numerical method for evaluation and utilization of supersonic nacelle-wing interference , 1969 .

[34]  Dimitri N. Mavris,et al.  Sonic Boom Minimization Using Improved Linearized Tools and Probabilistic Propagation , 2005 .

[35]  Garret N. Vanderplaats,et al.  Numerical optimization techniques for engineering design , 1999 .

[36]  Brian Argrow,et al.  SONIC BOOM MINIMIZATION REVISITED , 1998 .

[37]  Kenneth J. Plotkin,et al.  PCBoom3 Sonic Boom Prediction Model - Version 1.0c , 1996 .

[38]  S. Crow,et al.  Distortion of sonic bangs by atmospheric turbulence , 1969, Journal of Fluid Mechanics.