SOURCES AND EFFECTS OF IONIZING RADIATION : United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes

[1]  G. Kirchner,et al.  Transport of iodine and cesium via the grass-cow-milk pathway after the Chernobyl accident. , 1994, Health physics.

[2]  M. Santoro,et al.  BRAF mutations are not a major event in post-Chernobyl childhood thyroid carcinomas. , 2004, The Journal of clinical endocrinology and metabolism.

[3]  Gerald Kirchner,et al.  Environmental processes affecting plant root uptake of radioactive trace elements and variability of transfer factor data: a review. , 2002, Journal of environmental radioactivity.

[4]  Luca Chiovato,et al.  Prevalence of thyroid autoantibodies in children and adolescents from Belarus exposed to the Chernobyl radioactive fallout , 1998, The Lancet.

[5]  A. Bouville,et al.  Uncertainties in thyroid dose reconstruction after Chernobyl. , 2003, Radiation protection dosimetry.

[6]  R. D. Lloyd,et al.  A cohort study of thyroid disease in relation to fallout from nuclear weapons testing. , 1993, JAMA.

[7]  L. Anspaugh,et al.  Chernobyl accident: reconstruction of thyroid dose for inhabitants of the Republic of Belarus. , 1999, Health physics.

[8]  V. Ivanov,et al.  MORTALITY AMONG THE CHERNOBYL EMERGENCY WORKERS: ESTIMATION OF RADIATION RISKS (PRELIMINARY ANALYSIS) , 2001, Health physics.

[9]  L. Mariani,et al.  RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. , 1998, Clinical cancer research : an official journal of the American Association for Cancer Research.

[10]  P. Hall,et al.  Lenticular opacities in individuals exposed to ionizing radiation in infancy. , 1999, Radiation research.

[11]  F. Gering,et al.  Thyroid cancer risk in Belarus after the Chernobyl accident: Comparison with external exposures , 2000, Radiation and environmental biophysics.

[12]  G. Daniels,et al.  Chronic autoimmune thyroiditis. , 1996, The New England journal of medicine.

[13]  H. Rabes,et al.  High prevalence of RET rearrangement in thyroid tumors of children from Belarus after the Chernobyl reactor accident. , 1995, Oncogene.

[14]  M. Akahoshi,et al.  Noncancer Disease Incidence in Atomic Bomb Survivors, 1958–1998 , 2004, Radiation research.

[15]  A. Salo,et al.  Response to an accident in theory and in practice , 1988 .

[16]  J. Chyssler,et al.  The Chernobyl fallout: Surface soil deposition in Sweden , 1989 .

[17]  F. Trompier,et al.  DOSE RECONSTRUCTION BY EPR SPECTROSCOPY OF TOOTH ENAMEL: APPLICATION TO THE POPULATION OF ZABORIE VILLAGE EXPOSED TO HIGH RADIOACTIVE CONTAMINATION AFTER THE CHERNOBYL ACCIDENT , 2004, Health physics.

[18]  M. C. Leske,et al.  The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. , 1993, Archives of ophthalmology.

[19]  I. Amundsen,et al.  Economic consequences of the chernobyl accident in Norway in the decade 1986–1995 , 1998 .

[20]  Jacques Ferlay,et al.  Cancer incidence in five continents. , 1976, IARC scientific publications.

[21]  S. Libutti,et al.  Using gene expression profiling to differentiate benign versus malignant thyroid tumors. , 2004, Cancer research.

[22]  B. Howard The concept of radioecological sensitivity , 2000 .

[23]  G. Chiappetta,et al.  RET protein expression has no prognostic impact on the long-term outcome of papillary thyroid carcinoma. , 2001, European journal of endocrinology.

[24]  G. Voigt,et al.  Estimation of 131I thyroid doses for the evacuees from Pripjat , 1996, Radiation and environmental biophysics.

[25]  D. Krstić,et al.  Vertical profile of 137Cs in soil. , 2004, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[26]  S. Asa,et al.  ret/PTC-1, -2, and -3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? , 1996, The Journal of clinical endocrinology and metabolism.

[27]  J. Michaelis,et al.  Childhood leukaemia in Europe after Chernobyl: 5 year follow-up. , 1996, British Journal of Cancer.

[28]  H. Höfler,et al.  Gene rearrangement and Chernobyl related thyroid cancers , 2000, British Journal of Cancer.

[29]  Y. Sivintsev Radioactive iodine in the problem of radiation safety , 1974 .

[30]  A. Pinchera,et al.  Oncogenic rearrangements of the RET proto-oncogene in papillary thyroid carcinomas from children exposed to the Chernobyl nuclear accident. , 1995, Cancer research.

[31]  Yoshisada Shibata,et al.  15 years after Chernobyl: new evidence of thyroid cancer , 2001, The Lancet.

[32]  H. Rabes,et al.  Absence of RAS and p53 mutations in thyroid carcinomas of children after Chernobyl in contrast to adult thyroid tumours. , 1998, British Journal of Cancer.

[33]  V. Ivanov,et al.  Radiation and epidemiological analysis for solid cancer incidence among nuclear workers who participated in recovery operations following the accident at the Chernobyl NPP. , 2004, Journal of radiation research.

[34]  S. Fesenko,et al.  [Regularities of changes in 137Cs content in milk in the long term after the Chernobyl nuclear reactor accident]. , 2004, Radiatsionnaia biologiia, radioecologiia.

[35]  S. Yamashita,et al.  Radiocesium in children residing in the western districts of the Bryansk Oblast from 1991-1996. , 2000, Health physics.

[36]  A. Bounacer,et al.  High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation , 1997, Oncogene.

[37]  J H Lubin,et al.  Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. , 1995, Radiation research.

[38]  K. Kopecky,et al.  Risk of Thyroid Cancer in the Bryansk Oblast of the Russian Federation after the Chernobyl Power Station Accident , 2004, Radiation research.

[39]  V. Correcher,et al.  COMPARISON OF RETROSPECTIVE LUMINESCENCE DOSIMETRY WITH COMPUTATIONAL MODELING IN TWO HIGHLY CONTAMINATED SETTLEMENTS DOWNWIND OF THE CHERNOBYL NPP , 2004, Health physics.

[40]  A. Aarkrog,et al.  Consequences of the Chernobyl accident for the natural and human environments , 1996 .

[41]  Philippe Vielh,et al.  Gene Expression Profiling of Differentiated Thyroid Neoplasms , 2004, Clinical Cancer Research.

[42]  S. Nagataki,et al.  Thyroid diseases among atomic bomb survivors in Nagasaki. , 1994, JAMA.

[43]  Scott Davis,et al.  Thyroid neoplasia, autoimmune thyroiditis, and hypothyroidism in persons exposed to iodine 131 from the hanford nuclear site. , 2004, JAMA.

[44]  V. Kashparov,et al.  Territory contamination with the radionuclides representing the fuel component of Chernobyl fallout. , 2003, The Science of the total environment.

[45]  Steven E Lipshultz,et al.  Radiation-associated cardiovascular disease. , 2003, Critical reviews in oncology/hematology.

[46]  V. Beral,et al.  Thyroid cancer in the Ukraine , 1995, Nature.

[47]  J. Rosai,et al.  Guest Editorial: Two Proposals Regarding the Terminology of Thyroid Tumors , 2000, International journal of surgical pathology.

[48]  M. Balonov,et al.  Contributions of short-lived radioiodines to thyroid doses received by evacuees from the Chernobyl area estimated using early in vivo activity measurements. , 2003, Radiation protection dosimetry.

[49]  Ivanov Vk,et al.  [Incidence of post-Chernobyl leukemia and thyroid cancer in children and adolescents in the Briansk region: evaluation of radiation risks]. , 2003 .

[50]  K. Hove,et al.  Reduction of Radiocesium Transfer to Animal Products Using Sustained Release Boli with Ammoniumiron(III)-Hexacyanoferrate(II) , 1993, Acta Veterinaria Scandinavica.

[51]  C. Eheman,et al.  Autoimmune thyroid disease associated with environmental thyroidal irradiation. , 2003, Thyroid : official journal of the American Thyroid Association.

[52]  P. Lecomte,et al.  Iodine Supplementation , 2000, Drug safety.

[53]  M. Otake,et al.  Ophthalmologic changes related to radiation exposure and age in adult health study sample, Hiroshima and Nagasaki. , 1983, Radiation research.

[54]  J. Moore,et al.  Thyroid cancer in children. , 1959, Canadian journal of surgery. Journal canadien de chirurgie.

[55]  R. Avila,et al.  Quantitative assessment of radiocaesium bioavailability in forest soils , 2000 .

[56]  G. Pröhl,et al.  A CONSISTENT RADIONUCLIDE VECTOR AFTER THE CHERNOBYL ACCIDENT , 2002, Health physics.

[57]  K. F. Eckerman,et al.  External exposure to radionuclides in air, water, and soil , 1996 .

[58]  V. Yoschenko,et al.  Kinetics of dissolution of Chernobyl fuel particles in soil in natural conditions. , 2004, Journal of environmental radioactivity.

[59]  B. Grosche,et al.  Thyroid Cancer after Diagnostic Administration of Iodine-131 in Childhood , 2001, Radiation research.

[60]  V. Vallejo,et al.  137Cs and 90Sr root uptake prediction under close-to-real controlled conditions , 1999 .

[61]  E Cardis,et al.  Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. , 1995, Radiation research.

[62]  R. M. Alexakhin,et al.  Countermeasures in agricultural production as an effective means of mitigating the radiological consequences of the Chernobyl accident , 1993 .

[63]  A. Pinchera,et al.  RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. , 2001, The Journal of clinical endocrinology and metabolism.

[64]  Cancer incidence in five continents. Volume VIII. , 2002, IARC scientific publications.

[65]  M. Mahoney,et al.  Thyroid cancer incidence trends in Belarus: examining the impact of Chernobyl. , 2004, International journal of epidemiology.

[66]  G. van Belle,et al.  Thyroid neoplasia in Marshall Islanders exposed to nuclear fallout. , 1987, JAMA.

[67]  R. Doll,et al.  Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[68]  G Pröhl,et al.  ECOSYS-87: a dynamic model for assessing radiological consequences of nuclear accidents. , 1993, Health physics.

[69]  K. Andersson,et al.  Weathering of radiocaesium contamination on urban streets, walls and roofs. , 2002, Journal of environmental radioactivity.

[70]  M. Ditto,et al.  Contamination of Austrian soil with caesium-137. , 2001, Journal of environmental radioactivity.

[71]  G. Raisbeck,et al.  Use of 129I and 137Cs in soils for the estimation of 131I deposition in Belarus as a result of the Chernobyl accident. , 2002, Journal of environmental radioactivity.

[72]  G. Kelly,et al.  Radiological consequences of the Chernobyl accident , 1996 .

[73]  D. Trichopoulos,et al.  Infant leukaemia after in utero exposure to radiation from Chernobyl , 1996, Nature.

[74]  K. Mück Fallout and exposure of the population in Austria after the Chernobyl accident / Fallout und Exposition der Bevölkerung in Österreich nach dem Reaktorunfall in Tschernobyl , 1996 .

[75]  M. Nikiforova,et al.  Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. , 2004, Cancer letters.

[76]  Andrzej Wojcik,et al.  The Medical Basis for Radiation-Accident Preparedness. The Clinical Care of Victims, Proceedings of the Fourth International REACT/TS Conference on The Medical Basis for Radiation-Accident Preparedness , 2002 .

[77]  I Linkov,et al.  The role of fungi in the transfer and cycling of radionuclides in forest ecosystems. , 2002, Journal of environmental radioactivity.

[78]  A. M. Korelo,et al.  Leukaemia and thyroid cancer in emergency workers of the Chernobyl accident: , 1997, Radiation and environmental biophysics.

[79]  R. Cumming,et al.  Possible associations between computed tomography scan and cataract: the Blue Mountains Eye Study. , 1999, American journal of public health.

[80]  N. Sanzharova,et al.  Countermeasures on Natural and Agricultural Areas after Chernobyl Accident , 2002 .

[81]  D. Scott Ionizing Radiation: Sources and Biological Effects , 1983 .

[82]  M. Suter,et al.  On the analysis of iodine-129 and iodine-127 in environmental materials by accelerator mass spectrometry and ion chromatography. , 1998, The Science of the total environment.

[83]  L T Chylack,et al.  Lens opacities classification system II (LOCS II) , 1989, Archives of ophthalmology.

[84]  F. Trimarchi,et al.  Post-Chernobyl increased prevalence of humoral thyroid autoimmunity in children and adolescents from a moderately iodine-deficient area in Russia. , 1999, Thyroid : official journal of the American Thyroid Association.

[85]  P. Ladenson,et al.  BRAF mutation in papillary thyroid carcinoma. , 2003, Journal of the National Cancer Institute.

[86]  Charles Mw,et al.  Studies of mortality of atomic bomb survivors. Report 13: Solid cancer and noncancer disease mortality: 1950-1997. , 2003 .

[87]  R. Mould,et al.  Thyroid cancer among "liquidators" of the Chernobyl accident. , 1997, The British journal of radiology.

[88]  I. Zvonova Dietary intake of stable I and some aspects of radioiodine dosimetry. , 1989, Health physics.

[89]  L. Anspaugh,et al.  The global impact of the Chernobyl reactor accident. , 1988, Science.

[90]  A. Auvinen,et al.  The Estonian study of Chernobyl cleanup workers: II. Incidence of cancer and mortality. , 1997, Radiation research.

[91]  G. Williams,et al.  RET activation in adult and childhood papillary thyroid carcinoma using a reverse transcriptase-n-polymerase chain reaction approach on archival-nested material. , 1996, British Journal of Cancer.

[92]  K Hove,et al.  The use of hexacyanoferrates in different forms to reduce radiocaesium contamination of animal products in Russia. , 1998, The Science of the total environment.

[93]  M. Balonov,et al.  Dynamics of 137Cs Content in Agricultural Food Products Produced in Regions of Russia Contaminated after the Chernobyl Accident , 1998 .

[94]  M. Balonov,et al.  Model validation for external doses due to environmental contaminations by the Chernobyl accident. , 1999, Health physics.

[95]  M. Markkanen,et al.  Mobile Survey of Environmental Gamma Radiation and Fall-Out Levels in Finland After the Chernobyl Accident , 1990 .

[96]  I. Fehér Experience in Hungary on the radiological consequences of the Chernobyl accident , 1988 .

[97]  G. Beebe,et al.  Chernobyl-related thyroid cancer in children of Belarus: a case-control study. , 1998, Radiation research.

[98]  J. Ferlay,et al.  Cancer incidence in five continents. Volume VI , 2004, Cancer Causes & Control.

[99]  S. Vowler,et al.  Thyroid carcinoma after Chernobyl latent period, morphology and aggressiveness , 2004, British Journal of Cancer.

[100]  L. Anspaugh,et al.  CHERNOBYL ACCIDENT: RETROSPECTIVE AND PROSPECTIVE ESTIMATES OF EXTERNAL DOSE OF THE POPULATION OF UKRAINE , 2002, Health physics.

[101]  V K Ivanov,et al.  A case-control analysis of leukemia in accident emergency workers of Chernobyl. , 2000, Journal of environmental pathology, toxicology and oncology : official organ of the International Society for Environmental Toxicology and Cancer.

[102]  S. Prêtre,et al.  Effects in Switzerland of the Chernobyl reactor accident / Auswirkungen des Reaktorunfalls von Tschernobyl in der Schweiz , 1996 .

[103]  C Eng,et al.  Gene expression in papillary thyroid carcinoma reveals highly consistent profiles , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[104]  N. Beresford,et al.  The importance of source-dependent bioavailability in determining the transfer of ingested radionuclides to ruminant-derived food products. , 2000 .

[105]  R. Avila,et al.  Identification of processes governing long-term accumulation of 137Cs by forest trees following the Chernobyl accident , 2001, Radiation and environmental biophysics.

[106]  D. Lloyd,et al.  A Survey of Chromosomal Aberrations in Lymphocytes of Chernobyl Liquidators , 1995 .

[107]  A. Hida,et al.  Cataract in atomic bomb survivors , 2004, International journal of radiation biology.

[108]  J. T. Smith,et al.  Modelling the long-term dynamics of radiocaesium in closed lakes. , 2002, Journal of environmental radioactivity.

[109]  V. Merabishvili,et al.  [Development of a population-based system of cancer registries in Russia]. , 2003, Voprosy onkologii.

[110]  A. Auvinen,et al.  The Estonian study of Chernobyl cleanup workers: I. Design and questionnaire data. , 1997, Radiation research.

[111]  J. Klempnauer,et al.  Prognostic significance of RET and NTRK1 rearrangements in sporadic papillary thyroid carcinoma. , 2000 .

[112]  A. Tsyb,et al.  Estimating individual thyroid doses for a case-control study of childhood thyroid cancer in Bryansk Oblast, Russia. , 2004, Radiation protection dosimetry.

[113]  L. Holm,et al.  Radiation risk estimates for leukemia and thyroid cancer among Russian emergency workers at Chernobyl. , 1997, Radiation and environmental biophysics.

[114]  H. Zitzelsberger,et al.  Chromosomal imbalances in post-chernobyl thyroid tumors. , 2004, Thyroid : official journal of the American Thyroid Association.

[115]  S. Levchuk,et al.  Soil- and plant-based countermeasures to reduce 137Cs and 90Sr uptake by grasses in natural meadows: the REDUP project. , 2001, Journal of environmental radioactivity.

[116]  B. Modan,et al.  Ret/PTC activation in benign and malignant thyroid tumors arising in a population exposed to low-dose external-beam irradiation in childhood. , 2004, The Journal of clinical endocrinology and metabolism.

[117]  N A Beresford,et al.  Transfer of radiocesium to ruminants in natural and semi-natural ecosystems and appropriate countermeasures. , 1991, Health physics.

[118]  A. Guskova,et al.  Chernobyl experience: biological indicators of exposure to ionizing radiation. , 1995, Stem cells.

[119]  Nations United sources and effects of ionizing radiation , 2000 .

[120]  W. Adams,et al.  Radiation effects in the Marshall Islands , 1996 .

[121]  R. Tuttle,et al.  The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. , 2000, The Journal of clinical endocrinology and metabolism.

[122]  V K Ivanov,et al.  Solid cancer incidence among the Chernobyl emergency workers residing in Russia: estimation of radiation risks , 2004, Radiation and environmental biophysics.

[123]  Daniel J Fink,et al.  A Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident: Objectives, Design and Methods , 2004, Radiation research.

[124]  G. Pröhl,et al.  A radioecological model for thyroid dose reconstruction of the Belarus population following the Chernobyl accident , 2004, Radiation and environmental biophysics.

[125]  K. Moysich,et al.  Patterns of acute leukaemia occurrence among children in the Chernobyl region. , 2001, International journal of epidemiology.

[126]  E. Realo,et al.  Studies on radiocaesium in Estonian soils , 1995 .

[127]  Per Hall,et al.  Thyroid cancer risk after thyroid examination with 131I: A population‐based cohort study in Sweden , 2003, International journal of cancer.

[128]  F A Cucinotta,et al.  Space Radiation and Cataracts in Astronauts , 2001, Radiation research.

[129]  G Selidovkin,et al.  Bone marrow transplantation after the Chernobyl nuclear accident. , 1989, The New England journal of medicine.

[130]  V. Ivanov,et al.  RADIATION-EPIDEMIOLOGICAL ANALYSIS OF INCIDENCE OF NON-CANCER DISEASES AMONG THE CHERNOBYL LIQUIDATORS , 2000, Health physics.

[131]  P. Verger,et al.  THYROID CANCER INCIDENCE AMONG ADOLESCENTS AND ADULTS IN THE BRYANSK REGION OF RUSSIA FOLLOWING THE CHERNOBYL ACCIDENT , 2003, Health physics.

[132]  P. Kastner,et al.  Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. , 2004, The Journal of clinical endocrinology and metabolism.

[133]  Fred A. Mettler,et al.  Medical Effects of Ionizing Radiation , 1985 .

[134]  M. Balonov,et al.  External exposure of the population living in areas of Russia contaminated due to the Chernobyl accident , 2002, Radiation and environmental biophysics.

[135]  J. Strohmaier,et al.  Diagnostic x-ray exposure and lens opacities: the Beaver Dam Eye Study. , 1993, American journal of public health.

[136]  K Hove,et al.  Countermeasures for radiocesium in animal products in Norway after the Chernobyl accident--techniques, effectiveness, and costs. , 1996, Health physics.

[137]  P. Kritidis,et al.  RADIOLOGICAL IMPACT IN GREECE OF THE CHERNOBYL ACCIDENT—A 10‐y RETROSPECTIVE SYNOPSIS , 2001, Health physics.

[138]  R. Shore,et al.  Issues and epidemiological evidence regarding radiation-induced thyroid cancer. , 1992, Radiation research.

[139]  J. Feichtinger,et al.  Investigation of food contamination since the Chernobyl fallout in Austria. , 2004, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[140]  W. K. Sinclair,et al.  Chernobyl: Myth and Reality , 1996 .

[141]  V. S. Kazakov,et al.  Thyroid cancer after Chernobyl , 1992, Nature.

[142]  A. Eller,et al.  Prevalence of lens changes in Ukrainian children residing around Chernobyl. , 1995, Health physics.

[143]  F. Campanile,et al.  Thyroid cancer in children and adolescents , 1986, Pediatric Surgery International.

[144]  C. Barden,et al.  Classification of follicular thyroid tumors by molecular signature: results of gene profiling. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[145]  E. Cardis Estimated long term health effects of the Chernobyl accident , 1996 .

[146]  E. Voice The radiological consequences of the Chernobyl accident , 1997 .

[147]  M. T. Ryan Medical Management of Radiation Accidents, Second Edition , 2002 .

[148]  M. Baxter Environmental contamination, radiation doses and health consequences after the chernobyl accident , 1997 .

[149]  Henry I. Kohn,et al.  Sources, Effects and Risks of Ionizing Radiation , 1989 .

[150]  W. Heidenreich,et al.  Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia , 1999, British Journal of Cancer.

[151]  Estimation of radioecological sensitivity , 2002 .

[152]  Watson Ws 137Cs concentration among children in areas contaminated with radioactive fallout from the Chernobyl accident: Mogilev and Gomel Oblasts, Belarus. , 1995 .

[153]  M. Balonov,et al.  Methodology of Internal Dose Reconstruction for A Russian Population after the Chernobyl Accident , 2000 .

[154]  W. Heidenreich,et al.  Age and time patterns in thyroid cancer after the Chernobyl accidents in the Ukraine. , 2000, Radiation research.

[155]  E. Nekolla,et al.  Childhood leukemia in Belarus before and after the Chernobyl accident: continued follow-up , 2001, Radiation and environmental biophysics.

[156]  P. Krajewski,et al.  RETROSPECTIVE EVALUATION OF 131I DEPOSITION DENSITY AND THYROID DOSE IN POLAND AFTER THE CHERNOBYL ACCIDENT , 2003, Health physics.

[157]  M. Maksioutov,et al.  Thyroid cancer incidence among liquidators of the Chernobyl accident , 2002, Radiation and environmental biophysics.

[158]  G. Beebe,et al.  Chernobyl: A Decade , 1998 .

[159]  Andriy G. Noshchenko,et al.  Radiation‐induced leukemia risk among those aged 0–20 at the time of the Chernobyl accident: A case‐control study in the Ukraine , 2002, International journal of cancer.

[160]  Radiation Epidemiological Studies in Russian National Medical and Dosimetric Registry : Estimation of Cancer and Non-cancer Consequences Observed among Chernobyl , 2002 .

[161]  P. Hall,et al.  Thyroid cancer after diagnostic administration of iodine-131. , 1996, Radiation research.