A constrained Metropolis–Hastings search for EMRIs in the Mock LISA Data Challenge 1B

We describe a search for the extreme-mass-ratio inspiral sources in the Round 1B Mock LISA Data Challenge data sets. The search algorithm is a Monte Carlo search based on the Metropolis–Hastings algorithm, but also incorporates simulated, thermostated and time annealing, plus a harmonic identification stage designed to reduce the chance of the chain locking onto secondary maxima. In this paper, we focus on describing the algorithm that we have been developing. We give the results of the search of the Round 1B data, although parameter recovery has improved since that deadline. Finally, we describe several modifications to the search pipeline that we are currently investigating for incorporation in future searches.

[1]  P. Graff,et al.  The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.

[2]  J. Gair,et al.  Improved time–frequency analysis of extreme-mass-ratio inspiral signals in mock LISA data , 2007, 0710.5250.

[3]  Report on the second Mock LISA Data Challenge , 2007, 0711.2667.

[4]  E. Porter,et al.  Searching for massive black hole binaries in the first Mock LISA Data Challenge , 2007, gr-qc/0701167.

[5]  J. C. Cornish Solution to the galactic foreground problem for LISA , 2006, astro-ph/0611546.

[6]  E. Porter,et al.  Catching supermassive black hole binaries without a net , 2006, gr-qc/0605135.

[7]  E. Porter,et al.  The search for massive black hole binaries with LISA , 2006, gr-qc/0612091.

[8]  Stanislav Babak,et al.  An Overview of the Mock LISA Data Challenges , 2006 .

[9]  J. Gair,et al.  Extracting Information about EMRIs using Time-Frequency , 2006, gr-qc/0612037.

[10]  J. Gair,et al.  Detecting extreme mass ratio inspiral events in LISA data using the hierarchical algorithm for clusters and ridges (HACR) , 2006, gr-qc/0610046.

[11]  A. Vecchio,et al.  A Markov chain Monte Carlo approach to the study of massive black hole binary systems with LISA , 2006 .

[12]  B. S. Sathyaprakash,et al.  The Mock LISA Data Challenges: An overview , 2006, gr-qc/0609105.

[13]  J. Gair,et al.  Automatic Bayesian inference for LISA data analysis strategies , 2006, gr-qc/0609010.

[14]  E. Porter,et al.  MCMC exploration of supermassive black hole binary inspirals , 2006, gr-qc/0605085.

[15]  N. Cornish,et al.  LISA data analysis using Markov chain Monte Carlo methods , 2005 .

[16]  N. Christensen,et al.  Bayesian modeling of source confusion in LISA data , 2005, gr-qc/0506055.

[17]  J. Gair,et al.  Detecting extreme mass ratio inspirals with LISA using time–frequency methods: II. Search characterization , 2005, gr-qc/0502100.

[18]  E. Phinney,et al.  Event Rate Estimates for LISA Extreme Mass Ratio Capture Sources , 2004, gr-qc/0405137.

[19]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[20]  Peter Sollich,et al.  AIP CONF PROC , 2001 .

[21]  Christophe Andrieu,et al.  Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..