Cellular automata model based on machine learning methods for simulating land use change

This paper presents an approach combining machine learning (ML), cross-validation methods and cellular automata (CA) model for simulating land use changes in Luxembourg and the areas adjacent to its borders. Throughout this article, we emphasize the interest in using ML methods as a base of CA model transition rule. The proposed approach shows promising results for prediction of land use changes over time. We validate the various models using cross-validation technique and Receiver Operating Characteristic (ROC) curve analysis, and compare the results with those obtained using a standard logit model. The application described in this paper highlights the interest of integrating ML methods in CA based model for land use dynamic simulation.

[1]  Heaton T. Jeff,et al.  Introduction to Neural Networks with Java , 2005 .

[2]  Helen Couclelis,et al.  Cellular Worlds: A Framework for Modeling Micro—Macro Dynamics , 1985 .

[3]  Stephen Wolfram,et al.  Cellular automata as models of complexity , 1984, Nature.

[4]  Paul M. Torrens,et al.  Geographic Automata Systems , 2005, Int. J. Geogr. Inf. Sci..

[5]  Booi Hon Kam,et al.  A Cellular Automata Model for Urban Land-Use Simulation , 2005 .

[6]  Xia Li,et al.  Cellular automata for simulating land use changes based on support vector machines , 2008, Comput. Geosci..

[7]  Thomas A. Hennig,et al.  The Shuttle Radar Topography Mission , 2001, Digital Earth Moving.

[8]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .

[9]  M. Bossard,et al.  CORINE land cover technical guide - Addendum 2000 , 2000 .

[10]  Qi Chen,et al.  A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones , 2011 .

[11]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[12]  Molly Espey,et al.  Modeling Urban Sprawl and Land Use Change in a Coastal Area-- A Neural Network Approach , 2005 .

[13]  P. Gerber,et al.  Mobilités quotidienne et résidentielle au Luxembourg : un apercu à travers l'outil Mobilluxweb , 2008 .

[14]  J. Neumann The General and Logical Theory of Au-tomata , 1963 .

[15]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[16]  Philippe Trigano,et al.  An Approach for spatial and temporal data analysis: Application for mobility modeling of workers in Luxembourg and its bordering areas , 2010, 2010 IEEE International Conference on Systems, Man and Cybernetics.

[17]  Daniel Müller,et al.  Land use dynamics in the central highlands of Vietnam: a spatial model combining village survey data with satellite imagery interpretation , 2002 .

[18]  Edna Hines Philosophy , 1932 .

[19]  Danielle J. Marceau,et al.  Exploration of Spatial Scale Sensitivity in Geographic Cellular Automata , 2005 .

[20]  Hichem Omrani,et al.  Simulation of land use changes using cellular automata and artificial neural network , 2012 .

[21]  Eric F. Lambin,et al.  Are agricultural land-use models able to predict changes in land-use intensity? , 2000 .

[22]  Fulong Wu,et al.  Calibration of stochastic cellular automata: the application to rural-urban land conversions , 2002, Int. J. Geogr. Inf. Sci..

[23]  Roger White,et al.  Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns , 1993 .

[24]  Zhiyong Hu,et al.  Modeling urban growth in Atlanta using logistic regression , 2007, Comput. Environ. Urban Syst..

[25]  Paola Flocchini,et al.  On the relationship between fuzzy and Boolean cellular automata , 2011, Theor. Comput. Sci..

[26]  Bodis Katalin,et al.  Development of a Data Set for Continental Hydrologic Modelling - Input Layers Related to Topography, Channel Geometry, Land Cover and Soil Characteristics of European and African River Basins , 2009 .

[27]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[28]  O. Walther,et al.  Cross-Border Metropolitan Integration in Europe: The Case of Luxembourg, Basel, and Geneva , 2009 .

[29]  Li Xia,et al.  Cellular Automata for Simulating Land Use Changes Based on Support Vector Machine , 2006 .

[30]  C. Lee Giles,et al.  What Size Neural Network Gives Optimal Generalization? Convergence Properties of Backpropagation , 1998 .

[31]  M. Batty,et al.  Modeling urban dynamics through GIS-based cellular automata , 1999 .

[32]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[33]  Lavalle Carlo,et al.  Sustainable Urban and Regional Planning. The MOLAND Activities on Urban Scenario Modelling and Forecast. , 2003 .